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LHC Parameters (pLHC Parameters (p--p) p) 
impacting on Cryogenicsimpacting on Cryogenicsimpacting on Cryogenicsimpacting on Cryogenics

• Circumference 26.7 km
• Beam energy in collision 7 TeV
• Beam energy at injection 0.45 TeV
• Dipole field at 7 TeV 8.33 T
• Luminosity 1034 cm-2.s-1

• Beam intensity 0 56 A• Beam intensity 0.56 A
• Energy loss per turn 6.7 keV
• Critical energy of radiated photons 44.1 eV
• Synchrotron power per beam 3.8 kW
• Stored energy per beam 350 MJ

O i 1 9 K• Operating temperature 1.9 K
• Cold mass 36.8x106 kg
• Helium inventory 130x103 kg
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• Helium inventory 130x10 kg



LHC operation cyclesLHC operation cycles
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Prepare Physics ≈ 10 Mins
Physics 10 - 20 Hrs



Cryogenic system main Cryogenic system main 
functionsfunctionsfunctionsfunctions

Cope with load variations and large dynamic range induced by 
the operation of the acceleratorthe operation of the accelerator

Cool down and fill but also empty and warm-up the huge cold 
mass of the LHC in a maximum time of 15 daysmass of the LHC in a maximum time of 15 days 

Cope with the resistive transitions of the superconducting 
magnets minimising loss of cryogen and system perturbationsmagnets minimising loss of cryogen and system perturbations

Limit the resistive transition propagation to the neighbouring 
magnets and recover in few hoursmagnets and recover in few hours

Cope with the resistive transition of a full sector 

Allow for rapid cool-down and warm-up of limited lengths of 
cryo-magnet strings, e.g. for repairing or exchanging a 
defective diode
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Overview of the cryogenic systemOverview of the cryogenic system

5 cryogenic islands

8 x 4.5 K refrigerators 
• (144 kW @ 4.5 K, 600 kW 

precooler and heater) p )

8 x 1.8 K refrigeration units
• (19 kW @ 1.8 K)( @ )

25 km of superconducting 
magnets in superfluid heliumg p

– several 1’000’s control loops:
– 1400 for current leads
– 320 for magnets temperature320 for magnets temperature
– 600 for beam screen
– several 1’000’s for refrigerators(distribution line)

(interconnection box)
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LHC COOLDOWNLHC COOLDOWN

Cooling towers

Cooling and ventilation
4800 m3/h of water

Electric power
about 32 MW; 24 GWh/month

/ h Cooling towers1.2 MCHF/month

Compressed air

Vacuum
10 3 b

Helium and nitrogen
130 t of He – 4.3 MCHF CRYOGENICS 10-3 mbar

10’000 t of LN2 – 1.6 MCHF CRYOGENICS
Controls:

Networks, fieldbuses, 
M t b l d [t] 36’800 PLC, SCADAMass to be cooled [t] 36’800        

Max He flow [g/s] 6160

Max cooling capacity 300-160 K [kW] 4800
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Liquefaction rate [g/s] 1000



Arc cooling principlesArc cooling principles
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LHC COOLDOWN 300 to 4.5 KLHC COOLDOWN 300 to 4.5 K
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Thermal shields temp. (average over sector) Magnet temperature (average over sector)Q1in D1in D2in D3in Q2in D4in D5in D6in D6out



Final cooldown to 1.9 KFinal cooldown to 1.9 K

L. Serio 1.6.2007



LHC COOLDOWN 4.5 to 1.9 KLHC COOLDOWN 4.5 to 1.9 K
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Cell Cooling Principle (I)Cell Cooling Principle (I)

SHe supply (4 6 K 3 bar)

GHe pumping (15 to 19 mbar)

SHe supply (4.6 K, 3 bar)

MagnetSaturated LHeII

Bayonet heat exchanger

Ps0
JT

Pressurised
TT TT TT TT TT TT TT TT

SlopeMagnet cell (107 m)

Wetted length (Lw) Dried length (Ld)
Hydraulic

plug

Pressurised
LHeII
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Cell Cooling Principle (II)Cell Cooling Principle (II)

Pressurised LHeII:
C t t 26 l/• Content: 26 l/m

• Free cross-section: 60 cm2

Bayonet heat exchanger:Bayonet heat exchanger:
• Linear thermal conductance: 120 W/m.K
• Free inner diameter: 54 mm

Control principle:
• The JT valve controls the temperature difference 

between:
- the maximum of cell temperature TT and
- the saturated temperature Ts0 corresponding to Ps0the saturated temperature Ts0 corresponding to Ps0.

• As a consequence:
- the bayonet heat exchanger is partially dried,

h d l h i i h h h d i i
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- the wetted length increase with the heat deposition.



Temperature Excursion Temperature Excursion 
during Injection Sequenceduring Injection Sequenceduring Injection Sequenceduring Injection Sequence
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Typical LHC ramp to nominal Typical LHC ramp to nominal 

current (11860 A)current (11860 A)current (11860 A)current (11860 A)
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Beam induced loadsBeam induced loads
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Beam Squeezing TransientBeam Squeezing Transient

Beam squeezing
• Fast transient heat deposition (few minutes)
• Heat loads (secondaries due to inelastic collisions):• Heat loads (secondaries due to inelastic collisions):

- 1.7 W/m in Nominal conditions
- Up to 4 W/m in Ultimate conditions
- Proportional to the beam luminosityProportional to the beam luminosity

Ratio up to 20 with respect to the static heat 
inleaks

Cont ol p incipleControl principle
• Feed-forward control  for ratio above 3
• “Normal” control for ratio below 3
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Temperature Excursion during Temperature Excursion during 
Fast Current RampFast Current Ramp--downdownFast Current RampFast Current Ramp downdown
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Quench and helium Quench and helium 
recoveryrecovery

500 kJ.m-1 stored magnetic energy dissipated in the windings 
( M Ch ki t)

recoveryrecovery

(see M. Chorowski spot)

Pressure rise contained by discharge every 106.9 m by cold 
safety valves (see R Couturier spot)safety valves (see R. Couturier spot)

Discharged helium buffered into header D or discharged and 
recovered from header D into gas storage vesselsrecovered from header D into gas storage vessels
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Recovery Time after Limited Recovery Time after Limited 
Resistive TransitionsResistive TransitionsResistive TransitionsResistive Transitions

A resistive transition warms up the magnets to 30 K
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More than 14 cells or full sector recovery up to 48 hours



ContentsContents
Introduction
• Systems, principles and parameters

Cooldown
• Principles and key figures
• From simulations to sector cooldown• From simulations to sector cooldown

From steady state to nominal powering
• Principles and key figures• Principles and key figures
• From simulations to full scale experiments

Working with circulating beamsg g
• Principles and key figures
• From simulations to full scale experiments

Fast current discharges and quenchFast current discharges and quench
• Principles and key figures
• From simulations to full scale experiments

L. Serio 1.6.2007

Conclusion



ConclusionsConclusions

The cooling principle of the LHC magnets and the cryogenic plants
will:will:
• In steady-state operation, maintain the arc magnet temperature below 1.9 K with

temperature stability within 10 mK
• In-between the different steady-state operation modes, give a temperature

stability within 70 mK
• Not limit the cycle rate of injection
• After a fast current ramp-down, maintain the magnet temperature below Tλ, but

a recovery time of 2 hours is requireda recovery time of 2 hours is required
• Because of local random losses, give a maximum temperature excursion of 20 mK
• After a limited resistive transition, give a beam down time of 4 to 7 hours

Individual system, full scale prototype and final full sector tests
have validated the basic design and operating principles as well as
demonstrated a high level of availability achievable after the
necessary commissioning time required by this complex but
performing system
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