

31 May to 01 June 2007

COPING WITH TRANSIENTS

L. SERIO CERN, Geneva (Switzerland)

Introduction

• Systems, principles and parameters

Cooldown

- Principles and key figures
- From simulations to sector cooldown

From steady state to nominal powering

- Principles and key figures
- From simulations to full scale experiments

Working with circulating beams

- Principles and key figures
- From simulations to full scale experiments

Fast current discharges and quench

- Principles and key figures
- From simulations to full scale experiments

Conclusion

Introduction

- Systems, principles and parameters
- Cooldown
 - Principles and key figures
 - From simulations to sector cooldown
- From steady state to nominal powering
 - Principles and key figures
 - From simulations to full scale experiments
- Working with circulating beams
 - Principles and key figures
 - From simulations to full scale experiments
- Fast current discharges and quench
 - Principles and key figures
 - From simulations to full scale experiments
- Conclusion

LHC Parameters (p-p) impacting on Cryogenics

•	Circumference	26.7	km
•	Beam energy in collision	7	TeV
•	Beam energy at injection	0.45	TeV
•	Dipole field at 7 TeV	8.33	Т
•	Luminosity	10 ³⁴	cm ⁻² .s ⁻¹
•	Beam intensity	0.56	Α
•	Energy loss per turn	6.7	keV
•	Critical energy of radiated photons	44.1	eV
•	Synchrotron power per beam	3.8	kW
•	Stored energy per beam	350	MJ
•	Operating temperature	1.9	K
•	Cold mass	36.8x10 ⁶	kg
•	Helium inventory	130x10 ³	kg

LHC operation cycles

Cryogenic system main functions

- Cope with load variations and large dynamic range induced by the operation of the accelerator
- Cool down and fill but also empty and warm-up the huge cold mass of the LHC in a maximum time of 15 days
- Cope with the resistive transitions of the superconducting magnets minimising loss of cryogen and system perturbations
- Limit the resistive transition propagation to the neighbouring magnets and recover in few hours
- Cope with the resistive transition of a full sector
- Allow for rapid cool-down and warm-up of limited lengths of cryo-magnet strings, e.g. for repairing or exchanging a defective diode

**

Overview of the cryogenic system

- ➤ 5 cryogenic islands
- > 8 x 4.5 K refrigerators
 - (144 kW @ 4.5 K, 600 kW precooler and heater)
- > 8 x 1.8 K refrigeration units
 - (19 kW @ 1.8 K)
- 25 km of superconducting magnets in superfluid helium
 - several 1'000's control loops:
 - 1400 for current leads
 - 320 for magnets temperature
 - 600 for beam screen
 - several 1'000's for refrigerators

- Introduction
 - Systems, principles and parameters

Cooldown

- Principles and key figures
- From simulations to sector cooldown
- From steady state to nominal powering
 - Principles and key figures
 - From simulations to full scale experiments
- Working with circulating beams
 - Principles and key figures
 - From simulations to full scale experiments
- Fast current discharges and quench
 - Principles and key figures
 - From simulations to full scale experiments
- Conclusion

Electric power

LHC COOLDOWN

L. Serio

Arc cooling principles

LHC COOLDOWN 300 to 4.5 K

Time Evolution of Cold Mass Temperatures

Final cooldown to 1.9 K

LHC COOLDOWN 4.5 to 1.9 K

- Introduction
 - Systems, principles and parameters
- Cooldown
 - Principles and key figures
 - From simulations to sector cooldown

From steady state to nominal powering

- Principles and key figures
- From simulations to full scale experiments
- Working with circulating beams
 - Principles and key figures
 - From simulations to full scale experiments
- Fast current discharges and quench
 - Principles and key figures
 - From simulations to full scale experiments
- Conclusion

- Pressurised LHeII:
 - Content: 26 l/m
 - Free cross-section: 60 cm2
- Bayonet heat exchanger:
 - Linear thermal conductance: 120 W/m.K
 - Free inner diameter: 54 mm
- > Control principle:
 - The JT valve controls the temperature difference between:
 - the maximum of cell temperature TT and
 - the saturated temperature Ts0 corresponding to Ps0.
 - As a consequence:
 - the bayonet heat exchanger is partially dried,
 - the wetted length increase with the heat deposition.

Temperature Excursion during Injection Sequence

The magnet current rampup and de-ramp from 0 to 12 kA with a rate of 10 A/s (Eddy currents dissipate 480 J/m in the cold masses)

Heat partially buffered by helium content

Maximum temperature excursion: 50 mK

Typical LHC ramp to nominal current (11860 A)

- Introduction
 - Systems, principles and parameters
- Cooldown
 - Principles and key figures
 - From simulations to sector cooldown
- From steady state to nominal powering
 - Principles and key figures
 - From simulations to full scale experiments

Working with circulating beams

- Principles and key figures
- From simulations to full scale experiments
- Fast current discharges and quench
 - Principles and key figures
 - From simulations to full scale experiments
- Conclusion

Beam induced loads

Operating Conditions	Nominal [mW/m]		Ultimate [mW/m]	
Temperature level	4.6-20 K	1.9 K LHe	4.6-20 K	1.9 K LHe
Synchrotron radiation	330	1	500	1
Image current	360	1	820	2
Photo-electron cloud *	890	9	3040	30
Beam-gas scattering**	0.4	48	0.4	48
Random particle loss	0-0.1	0-32	0-0.3	0-48
Total beam-induced *	1580	59-91	4360	82-130

*: After beam cleaning

**: Improvement of the beam vacuum from nominal to ultimate

Beam Squeezing Transient

Beam squeezing

- Fast transient heat deposition (few minutes)
- Heat loads (secondaries due to inelastic collisions):
 - 1.7 W/m in Nominal conditions
 - Up to 4 W/m in Ultimate conditions
 - Proportional to the beam luminosity
 - Ratio up to 20 with respect to the static heat inleaks

Control principle

- Feed-forward control for ratio above 3
- "Normal" control for ratio below 3

- Introduction
 - Systems, principles and parameters
- Cooldown
 - Principles and key figures
 - From simulations to sector cooldown
- From steady state to nominal powering
 - Principles and key figures
 - From simulations to full scale experiments
- > Working with circulating beams
 - Principles and key figures
 - From simulations to full scale experiments

Fast current discharges and quench

- Principles and key figures
- From simulations to full scale experiments
- Conclusion

Temperature Excursion during Fast Current Ramp-down

Magnet current fast rampdown from 12 to 0 kA with a rate of 80 A/s, for which Eddy currents dissipate **3000 J/m** in the cold masses.

Magnet temperatureremainsbelowTλ(heliumstaysinsuperfluid state)

Recovery time: 2 hours

Quench and helium recovery

- 500 kJ.m⁻¹ stored magnetic energy dissipated in the windings (see M. Chorowski spot)
- Pressure rise contained by discharge every 106.9 m by cold safety valves (see R. Couturier spot)
- Discharged helium buffered into header D or discharged and recovered from header D into gas storage vessels

Recovery Time after Limited Resistive Transitions

➤ A resistive transition warms up the magnets to 30 K
➤ More than 14 cells or full sector → recovery up to 48 hours

L. Serio

- Introduction
 - Systems, principles and parameters
- Cooldown
 - Principles and key figures
 - From simulations to sector cooldown
- From steady state to nominal powering
 - Principles and key figures
 - From simulations to full scale experiments
- > Working with circulating beams
 - Principles and key figures
 - From simulations to full scale experiments
- Fast current discharges and quench
 - Principles and key figures
 - From simulations to full scale experiments
- Conclusion

- The cooling principle of the LHC magnets and the cryogenic plants will:
 - In steady-state operation, maintain the arc magnet temperature below 1.9 K with temperature stability within 10 mK
 - In-between the different steady-state operation modes, give a temperature stability within 70 mK
 - Not limit the cycle rate of injection
 - After a fast current ramp-down, maintain the magnet temperature below T λ , but a recovery time of 2 hours is required
 - Because of local random losses, give a maximum temperature excursion of 20 mK
 - After a limited resistive transition, give a beam down time of 4 to 7 hours
- Individual system, full scale prototype and final full sector tests have validated the basic design and operating principles as well as demonstrated a high level of availability achievable after the necessary commissioning time required by this complex but performing system

