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LHC Parameters (p-p)
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e Circumference 26.7 km
e Beam energy in collision V4 TeV
e Beam energy at injection 0.45 TeV
e Dipole field at 7 TeV 8.33 T

e Luminosity 1034 cm-—2.s1
e Beam intensity 0.56 A

e Energy loss per turn 6.7 keV
e Critical energy of radiated photons 44.1 eV
e Synchrotron power per beam 3.8 kW
e Stored energy per beam 350 MJ
e QOperating temperature 1.9 K

e Cold mass 36.8x10° kg
e Helium inventory 130x103 kg
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LHC operation
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Cryogenic system main

functions
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» Cope with load variations and large dynamic range induced by
the operation of the accelerator

» Cool down and fill but also empty and warm-up the huge cold
mass of the LHC in a maximum time of 15 days

» Cope with the resistive transitions of the superconducting
magnets minimising loss of cryogen and system perturbations

» Cope with the resistive transition of a full sector
» Allow for rapid cool-down and warm-up of limited lengths of

cryo-magnet strings, e.g. for repairing or exchanging a
defective diode

L. Serio 1.6.2007



Overview of the cryogenic system

» 5 cryogenic islands

» 8 x 4.5 K refrigerators

e (144 KW @ 4.5 K, 600 kW
precooler and heater)

» 8 x 1.8 K refrigeration units
e (19 kW @ 1.8 K)

» 25 km of superconducting
magnets in superfluid helium

— several 1’000’s control loops:

— 1400 for current leads

— 320 for magnets temperature

— 600 for beam screen

Legend: Legend:
QRL (distribution line) — Arc — several 1'000’s for refrigerators
QUI (interconnection box) = Dispersion Suppressors
@ Refrigerator - Long Staight Section
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v  Electric power
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Arc cooling principles

L LHC sector (3.3 km) R

Refrigerator 3 ik

Header E
- >
V1 V2
X Header F
> -

. V3X Header C V4X V5
Tin_g > b-//'-d -
Toul‘ WR

@ e e @ o o e s VGX
O XN @} ] O O @] J o O
DS DS arc arc arc arc DS DS
e ACS|  BAM cell cell cell cell cell cell cell cell DFB| SAM| [ IT [y
2
9 PV PV QV QVX AQV QV QV Qv X XQv QVX PV QV
| \ )
L LSS right . DSright regular arc DS left , LSS left K
I~ T T T il

SAM = stand-alone and semi-stand alone magnets

L. Serio 1.6.2007



LHC COOLDOWN 300 to 4.5 K

Time Evolution of Cold Mass Temperatures
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Final cooldown to 1.9 K
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Cell Cooling Principle (1)

SHe supply (4.6 K, 3 bar)

GHe pumping (15 to 19 mbar)
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Cell Cooling Principle (I1)

» Pressurised LHell:
e Content: 26 I/m
e Free cross-section: 60 cm2

» Bayonet heat exchanger:
e Linear thermal conductance: 120 W/m.K
e Free inner diameter: 54 mm

» Control principle:
e The JT valve controls the temperature difference
between:
- the maximum of cell temperature TT and
- the saturated temperature TsO corresponding to PsO.
e As a consequence:

- the bayonet heat exchanger is partially dried,
- the wetted length increase with the heat deposition.
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Temperature Excursion
during Injection Sequence
—AT cell #1 — AT cell #27 The magnet current ramp-
— Magnet current Pumping capacity
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) Typical LHC ramp to nominal
current (11860 A)
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Operating Conditions

Beam induced loads

Nominal [mW/m]

Ultimate [mW/m]

Temperature level

4.6-20K 1.9KLHe 4.6-20K 1.9 K LHe

Synchrotron radiation 330 1 500 1
Image current 360 1 820 2
Photo-electron cloud * 890 9 3040 30
Beam-gas scattering™* 0.4 48 0.4 48
Random particle loss 0-0.1 0-32 0-0.3 0-48
Total beam-induced * 1580 59-91 4360 82-130

*: After beam cleaning

**: Improvement of the beam vacuum from nominal to ultimate
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@ ’ﬁ@ Beam Squeezing Transient

» Beam squeezing
e Fast transient heat deposition (few minutes)

e Heat loads (secondaries due to inelastic collisions):
- 1.7 W/m in Nominal conditions
- Up to 4 W/m in Ultimate conditions
- Proportional to the beam luminosity

= Ratio up to 20 with respect to the static heat
inleaks

» Control principie
e Feed-forward control for ratio above 3
 “Normal” control for ratio below 3
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Quench and helium
recovery

» 500 kJ.m-1 stored magnetic energy dissipated in the windings
(see M. Chorowski spot)

» Pressure rise contained by discharge every 106.9 m by cold
safety valves (see R. Couturier spot)

» Discharged helium buffered into header D or discharged and

recovered from header D into gas storage vessels
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» A resistive transition warms up the magnets to 30 K
» More than 14 cells or full sector = recovery up to 48 hours
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Conclusions

» The cooling principle of the LHC magnets and the cryogenic plants
will:
e In steady-state operation, maintain the arc magnet temperature below 1.9 K with
temperature stability within 10 mK

e In-between the different steady-state operation modes, give a temperature
stability within 70 mK

 Not limit the cycle rate of injection

e After a fast current ramp-down, maintain the magnet temperature below TA, but
a recovery time of 2 hours is required

e Because of local random losses, give a maximum temperature excursion of 20 mK
e After a limited resistive transition, give a beam down time of 4 to 7 hours

» Individual system, full scale prototype and final full sector tests
have validated the basic design and operating principles as well as
demonstrated a high level of availability achievable after the
necessary commissioning time required by this complex but
performing system
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