Update on the difference between old and new HL-LHC impedance model

N. Mounet, S. Antipov, X. Buffat, C. Zannini.

Acknowledgements: D. Amorim, R. Bruce, A. Mereghetti, B. Salvant.

A few more updates on the model

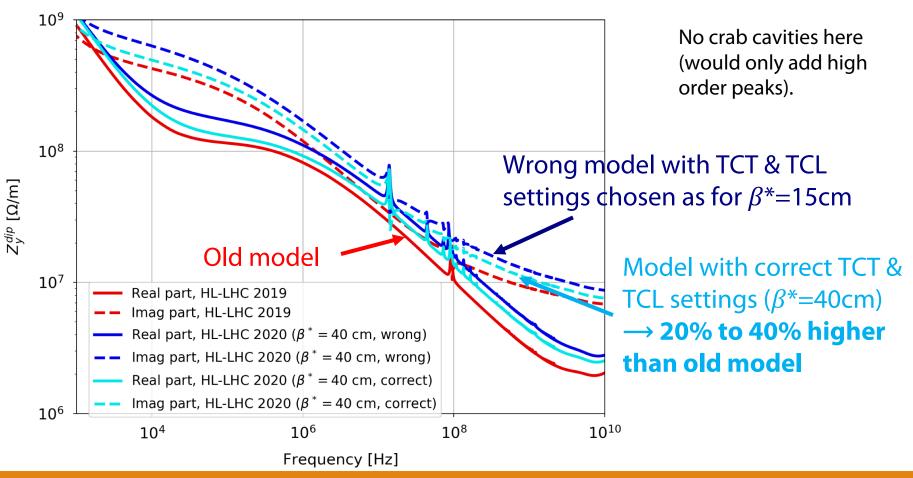
- The factors due to the shape and weld of the octagonal triplet beam screens were computed accurately (using CST) by **C. Zannini**
 - \rightarrow replace the previous rough estimates that were used,
 - → accurate computations gives lower factor than the previous estimates (which were quite pessimistic):

Factor	BS88	BS101	BS121
Long. factor	1.5942	1.36	1.0738
Dip. factor x	0.72855	0.89452	0.8587
Dip. factor y	1.6422	1.6231	1.3022

Courtesy C. Zannini

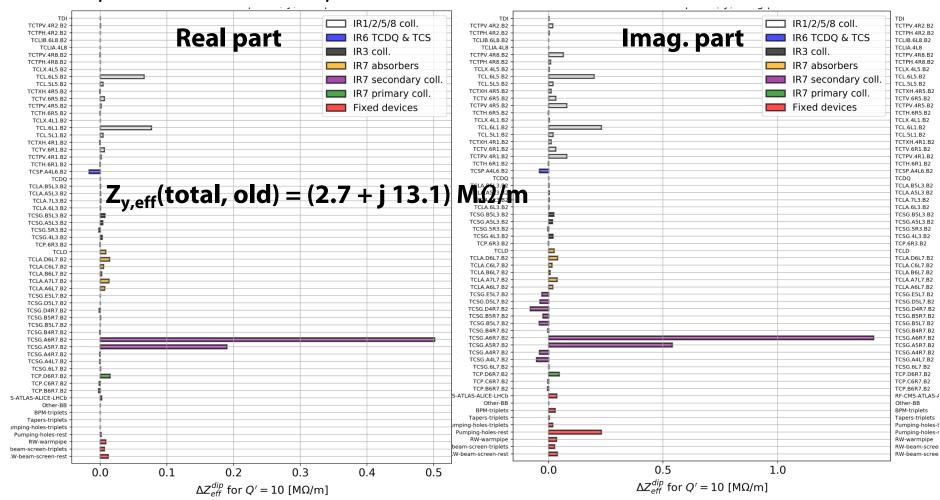
- → this has an impact only at low frequencies, so the effect of the change is negligible for any operational configuration with transverse damper.
- \triangleright Model updated for β *=40cm
 - \rightarrow settings in # σ depend on β * in the TCTs and TCLs of IR1/5 and this has some impact (see next slide).
- List of devices included in model summarized in appendix.

HL-LHC – Collimator settings

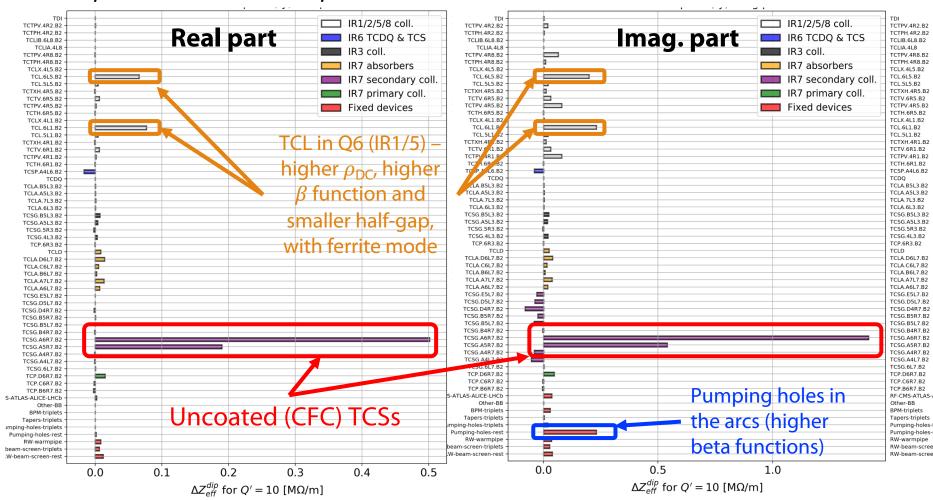

 \triangleright Collimator settings (σ computed with ε = 2.5 μ m.rad) at top energy – for two different β^*

Collimators	Half-gap [$\#\sigma$] $eta^*=$ 15cm	Half-gap [$\#\sigma$] $eta^*=$ 40cm
TCP/TCS/TCLA(D) IR7	6.7 / 9.1 / 12.7 (16.6)	6.7 / 9.1 / 12.7 (16.6)
TCP/TCS/TCLA IR3	17.7 / 21.3 / 23.7	17.7 / 21.3 / 23.7
TCDQ/TCS IR6	10.1	10.1
TCT IR1/5	10.4	16.4
TCL (IR1/5) Q4/Q5/Q6	14.2	22.4
TCT IR2/8	43.8 / 17.7	35.5 / 17.7

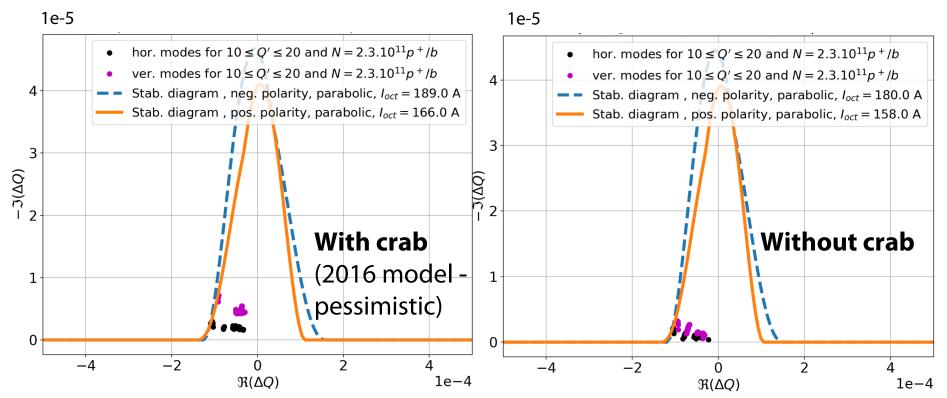
Note: injection protection collimators are always in parking position at top energy.


The question

Why is the impedance significantly higher with the new HL-LHC impedance model, compared to the previous one computed by S. Antipov in 2019?


Impedance contributions between old and new models

Pifference in effective impedance (vertical, Q'=10) in single bunch, between old (β *=48cm) and new (β *=40cm) model:


Impedance contributions between old and new models

▶ Difference in effective impedance (vertical, Q'=10) in single bunch, between old (β *=48cm) and new (β *=40cm) model:

Effect of the crab cavities

Modes inside the stability diagram ($N_b=2.3e11 p+/b$, 25ns beam, $\varepsilon=2.1\mu m$, $4\sigma_{RMS}=1.2ns$, 100 turns damper, taking all modes for 10 < Q' < 20, **no factor 2**):

 \Rightarrow Despite a quite significant effect on imaginary tune shifts, the impact of crab cavities on stability is small (<10A, i.e. 5%) – note that here, **teleindex~2** as the v1.4 optics with β *=40cm are used.

Conclusions

- Main changes of the impedance model w.r.t. the 2019 one, are
 - ☐ the 2 uncoated secondary collimators,
 - □ to a lesser extent, the TCL in Q6 IR1/5 (more resistive, closer, higher beta functions, than in old model),
 - ☐ to an even lesser extent, pumping holes in the arcs (higher beta functions in the arcs with 40cm optics).
 - \Rightarrow impact on impedance from +20% to +40%,
 - \Rightarrow overall impact on stability threshold +13% (+5% more with crab cavities).
- Crab cavities have a significant effect on imaginary tune shifts but overall a small impact on stability thresholds, as shown in the past.

Appendix

HL-LHC impedance model

- Changes w.r.t. the LHC that are included in the HL model:
 - ✓ Collimator at almost full upgrade (jaws of 2 TCPs and all but 2 TCSs in IR7 replaced by Mo-graphite ones, Mo-coated for the TCSs); some TCTs in Cu-coated copper-diamond; tungsten TCLD absorber in IR7,
 - ✓ Updated collimator tapers,
 - ✓ Beta functions in the arcs and triplets (optics v1.4),
 - ✓ TDIS (with graphite, Ti_6AI_4V and CuCr1Zr),
 - ✓ New MKI-cool 4 of them,
 - ✓ New octogonal beam screens in triplets, with up-to-date dimensions, aC-coating, 75K copper, pumping holes and welds (accurate weld & shape factors from C. Zannini),
 - ✓ Updated experimental chambers (ATLAS & CMS),
 - ✓ Tapers and BPMs in the triplets region,
 - ✓ Crab cavities,
 - ✓ Deformable RF-fingers, VAX and Y-chambers in triplet region.

HL-LHC impedance model

- ➤ Modifications that are not (yet) in the model:
 - X VELO,
 - X experimental chambers ALICE and LHCb, possibly also CMS,
 - **X** new instrumentation,
 - **X** possible aC-coating in some sectors,
 - X possible additional collimators in IR1 & 5, TCLD in IR2 (in parking for protons) and updated design of all tertiaries and TCLs, old CFC collimators in parking?
 - X crab cavities HOMs as measured in real cavities,
 - X electron lens and crystal collimators (recently added to baseline),
 - X new roman pots,
 - X "SMOG3" in LHCb.