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y Instabilities at injection energy

In Run 2 weak instabilities were often taking place at injection energy:

~N/LS

« Well contained (but never fully suppressed) using high chromaticity (15-
20) and high octupole current (~50A)

» Impact on performance was very modest as the blow-up was relatively
small (w.r.t global blow-up in the ramp) and affecting a small number of
bunches
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e-cloud in the main dipoles — single bunch instabilities

<7 In the main dipoles, when the bunch intensity is increased, the electron density at the
beam location is strongly suppressed

—> this strongly mitigates single-bunch instabilities
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FIG. 8. Horizontal electron density profile in a dipole magnet for different bunch intensities. These snapshots have been taken for
selected bunches along the bunch train (as labeled). The vertical dashed lines delimit a distance of =2.5 mm from the beam position
(x =0).

For more info: https://journals.aps.orq/prab/pdf/10.1103/PhysRevAccelBeams.21.061002
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y e-cloud in the main dipoles — single bunch instabilities

<7 In the main dipoles, when the bunch intensity is increased, the electron density at the
beam location is strongly suppressed

—> this strongly mitigates single-bunch instabilities

The critical intensity range is 0.5-1.0 x 101! p/bunch as observed during stable beams
in 2016 (instability disappeared later, probably due to scrubbing)
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y e-cloud in the main dipoles — coupled bunch instabilities

>~ Electrons far from the center can drive coupled-bunch instabilities

* Nevertheless, these are effectively suppressed by the ADT
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For more info:
L. Mether, “Electron cloud stability: couopled bunch effects”, presentation at HL-LHC WP2 meeting 10 Dec 2019
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y Quadrupoles

~7_~"

Electrons in the arc quadrupoles are expected to be the strongest source for instabilities at
450 GeV, as the quadrupolar field concentrates a large electron density around the beam
location

— Studied extensively with macroparticle simulations over the last years
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L. Sabato, “Electron cloud stability: Single bunch effects”, presentation at HL-LHC WP2 meeting 10 Dec 2019
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y Quadrupoles

=\ Fortunately, also in the case of the quadrupoles, the increase in bunch intensity
has the beneficial effect
* The electron density is reduced
e The instability is mitigated
40; [ns]
1.3 1.2 1.1 1.0 3.0
101 ppb (
—— 1.2 = 2.9
—e— 13 S
1 —— 14 9 |
1 O— o= —C 1.6 E
1.7 U 2.7 -
.0 1.8 @
19 ¢
5 20 £ 267
21 F
0] —e— 2.2 2.5 1
Simulations of the e-cloud dynamics —— 23 Effect on the beam dynamics
3 4 5 6 7 8 0 2000 4000 6000 8000 10000
Vgr [MV] Turn

L. Sabato



B Y Outline

~7_~"

e Qutline

* Instability dependence on the bunch intensity

o Experimental observations with trains of 12b



Experimental observations with trains of 12b
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These expectations are consistent with first tests with high-intensity 25ns
beams (trains of 12b) in 2018 MD
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Effect of the transverse emittance

For emittances larger than 1.8 um the instability risetime is practically

independent of the beam size

* Nevertheless the octupoles strength needs to be adapted to keep the same
tune spread (no expected effect on lifetime)

o This was already done in 2016 for the transition to the BCMS beams
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Effect of the transverse emittance

Also for small emittances, the increase in bunch intensity has a beneficial effect
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y Conclusions and final remarks
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The increase in bunch intensity is expected to have a positive impact on the beam stability over
the full range from 1.2 x 10! p/bunch to 2.3 x 10! p/bunch.

After scrubbing, operation in Run 2 with 1.2 x 10! p/bunch required:
* ADT damping time: <20 turns (large bandwidth settings)
Chromaticity: 15-20 units

* Octupoles: 50 A (for emittances of ~1.8 um)

o Octupole current needed to be adapted to follow the change in emittance to keep
constant tune spreads

* Takinginto account that in the HL-LHC era we will have to go through reconditioning stages
after each Long Shutdown, we propose to use these settings for the HL-LHC operational

scenarios (practically already done), knowing that some optimization might be possible later
in the run

* During scrubbing runs and following intensity ramp-up larger Q’/octupoles might be needed
to control instabilities (possibly at the expense of lifetime)

o For this purpose itoptics choices should not degrade the DA w.r.t. to Run 2

- this motivated recent checks done by Riccardo and Fabien



