Rare decays of beauty baryons

Vitalii Lisovskyi

on behalf of LHCb group @ TU Dortmund vitalii.lisovskyi@cern.ch

European Research Council

Jahrestreffen der deutschen LHCb-Gruppen Bonn, 6 October 2020

Welcome to our zoo

• Weakly-decaying beauty hadrons:

There are many heavier states which decay strongly/EM to these listed states. Anomalies in $b \rightarrow s\ell^+\ell^-$ decays

• Nice overview in yesterday's talks: anomalies in rare B-meson decays

 Beauty baryons historically got much less attention: they cannot be produced at B factories

- Studied at Tevatron and LHC
- Still, at LHCb: only ~12% publications on rare decays study baryons.
- This talk: will show the possibilities in baryon decays

I will mostly be talking about $b \rightarrow s\ell^+\ell^-$ transitions, opening the scope towards the end of my talk.

$\rightarrow s\ell^+\ell^-$ and baryons

Can baryons bring additional knowledge?

Spin of the initial b-baryon is always 1/2

- All weakly-decaying B mesons are spin-0: **baryons bring more observables**
- **Rich angular structure**, especially in cascade decays
- Baryons can be produced polarised (not easy at the LHC, it seems)

Complementarity to B-meson decays:

- Expect similar deviations from SM as in meson sector
- We can test if BSM couplings are spin-dependent
- But: spectator system is a diquark -> different hadronic uncertainties
- **Different experimental backgrounds** & challenges
- Our world is made of baryons, we should study them!

Which rare decays?

• Mesons:

meson spin transitions: $0 \rightarrow 0$ $0 \rightarrow 1$ $0 \rightarrow 2$

 $\begin{array}{ccc} \hline B \to K\ell^+\ell^- & B \to K^*\ell^+\ell^- & B \to K_2^*(1430)\ell^+\ell^- \\ B_s \to f_0(980)\ell^+\ell^- & B_s \to \phi\ell^+\ell^- & B_s \to f_2'(1525)\ell^+\ell^- \end{array}$

'narrow' final state meson = easy to select 'broad' = difficult interferences with overlapping states

Weakly-decaying final state: easier theoretical interpretation

Make your choice (at LHCb)

 Λ : ground state, decays weakly, long lifetime

- unique topology = smaller background
- lower efficiency to detect in acceptance
- lower efficiency to reconstruct the vertex

clean narrow state

easier theoretical predictions

Only rare decays of the Λ_b have been studied experimentally so far.

- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ studied by CDF and LHCb
- Differential decay rate [JHEP 06 (2015) 115]
 - syst.uncertainty: $\mathscr{B}(\Lambda_b \to J/\psi \Lambda)$
- Angular analysis [JHEP 09 (2018) 146]

• LHCb also observed $\Lambda_b \rightarrow \Lambda \gamma$ [PRL 123 (2019) 031801]

- A lot of theoretical feedback on LHCb results:
 - $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ results included in the global fits (e.g. <u>1903.10434</u>)
 - Improved form-factor calculations available
 - Improved predictions for SM and NP scenarios

- Prospects:
 - Update of differential BF and angular analysis with full LHCb dataset
 - Precise measurement of $\mathscr{B}(\Lambda_b \to J/\psi \Lambda)$ at LHCb
 - Search for $\Lambda_b \to \Lambda e^+ e^-$ and LFU test R_Λ
 - Measurement of photon polarisation with $\Lambda_b \to \Lambda \gamma$

 $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ gets the most theoretical and experimental attention so far. Can we do more?

verify whether differential BF disagrees with SM

 $m(pK^{-}e^{+}e^{-})$ [GeV/ c^{2}]

$\Lambda_b \to \Lambda^*(1520)\ell^+\ell^-$

- Next steps:
 - differential BF and angular analysis
 - selecting the window around $\Lambda^*(1520)$
 - R_{pK} update with full dataset
- Theoretical activity:
 - Form-factors from lattice: 2009.09313
 - diff. rate and angular observables: <u>2005.09602</u>, *JHEP* 06 (2019) 136, ...

- Amplitude analysis of $\Lambda_b \to pK^-\gamma$ (at $q^2 = 0$) to study the composition of all resonances in the pK system
 - Together with the updated $\Lambda_b \to pKJ/\psi$ study, brings valuable input for interpretation of R_{pK} result
 - Theoretical interest in $\Lambda_b \to p K^- \gamma$ [PLB 649 (2007) 152-158]

What about cleaner observables?

- Unique cascade topology
 - No background from mesons
 - Rich angular structure
- $\Xi_b \to \Xi \ell^+ \ell^-$ is linked via SU(3) symmetry to $\Lambda_b \to \Lambda \ell^+ \ell^-$

Λ

- only difference is spectator quark (s vs u/d)
- expect a similar behavior
- but: production rate smaller lower precision
- Th. predictions available: [Int.J.Th.Phys. 59 (2020) 9, 2712-2740] or [1609.09678]
 - Predict BF ~ 2.3×10^{-6} (is it the highest of all $b \rightarrow s\ell^+\ell^-$ decays?)
 - enhancement at high q^2 same as in $\Lambda_b \to \Lambda \ell^+ \ell^-$

Rare Ξ_b decays never studied before! Observation of such decays would be a first step. • LHCb can look for the charged $\Xi_b^- \to \Xi^- \mu^+ \mu^-$

 $\mathcal{L}^+ \mathcal{C}^-$ and Ω_h^- -

control channel $\Xi_b^- \to \Xi^- J/\psi$: 2016 data [PRD99 052006 (2019)]

no misidentifications; low partial-reco from Ξ^* (see argument in 1007.3632)

- Can also try $\Omega_b^- \to \Omega^- \mu^+ \mu^-$ (same topology)
- Ω is the only known spin-3/2 particle which decays weakly!
 - access to unique observables in angular analyses
 - $\Omega_b^- \to \Omega^- \gamma$: considered as the most attractive radiative baryonic decay
 - "a golden channel to extract the helicity structures of weak effective Hamiltonian" JHEP12(2011)067 (Siegen group)
- $\Omega_b^- \to \Omega^- \mu^+ \mu^-$ is easier at LHCb than the radiative mode.
- Sensitivity limited by small Ω_b^- production ($f_{\Omega_b} \sim f_{B_c}$)

Baryonic B-meson decays

We can also get baryons in decays of B mesons!

- Some curious results from LHCb in tree-level decays:
- $B^+ \to p \bar{p} \mu^+ \nu_{\mu}$ [JHEP 03 (2020) 146]
- Th: $\mathscr{B} = (1.04 \pm 0.38) \times 10^{-4} [PLB704, 495 (2011)]$
- LHCb: $\mathscr{B} = (5.27 \pm 0.35) \times 10^{-6}$
 - factor 20 lower!

• $B_s^0 \to p\bar{p}J/\psi$ [PRL 122 (2019) 191804]

- Th.expectation: $\mathscr{B} \sim 10^{-9} [1412.4900]$
- LHCb: $\mathscr{B} = (3.6 \pm 0.4) \times 10^{-6}$ (2 orders higher!)

Baryonic B-meson decays

- Understanding of decays with $p \bar{p}$ system has to be improved
- What can be happening:
 - Some broad resonance contributing to $p\bar{p}$ system, which has mixing with $s\bar{s}$ component? (enables another diagram)
 - Glueball in $m(p\bar{p})$
 - Pentaquarks in $J/\psi p$ (does not explain the large enhancement?)
 - Predictions do not account for some hadronic dynamics?

Idea: can we study loop-level rare baryonic decays?

• Search for $B_{(s)}^0 \to p\bar{p}\mu^+\mu^-$ is a starting point

- In case of observation: measured BR can help to understand the $p\bar{p}$ system
- Combine the " $p\bar{p}$ anomaly" with flavor anomalies?
- Gathering interest in other similar modes
- Further ideas to be explored in Run 3.

$b \rightarrow d\ell^+ \ell^-$ with baryons

- Cabibbo-suppressed partner of $b \to s\ell^+\ell^-$, even more rare!
- The simplest baryonic $b \to d\ell^+\ell^$ transition: $\Lambda_b \to n\ell^+\ell^-$
 - involves a neutron
 - not feasible
- LHCb has studied $\Lambda_b \rightarrow p \pi \mu^+ \mu^-$
 - excited N resonances

- No much activity beyond that.
- Decays of $\Xi_b \to \Lambda^{(*)} \mu^+ \mu^-$ can be accessible in Run 3.

Beyond $b \to s(d)\ell^+\ell^-$

- Mesons: W exchange diagrams
 - example: $B \rightarrow D^{(*)}\mu^+\mu^-$

- Same can be done in baryons!
- $\Lambda_b^0 \to \Sigma_c^0 \mu^+ \mu^- \text{ or } \Xi_b^0 \to \Xi_c^0 \mu^+ \mu^-$
- Th: $\mathscr{B}(\Lambda_b^0 \to \Sigma_c^0 \gamma) \sim 10^{-6}$ [PRD51:1199-1214,1995]

• Would be interesting to exploit these ideas in Run 3 of LHCb?

Summary

- A plenty of measurements to perform with rare decays of b-baryons
 - Valuable complementarity for anomalies seen in meson sector
 - Can only be done at LHC -> we must do it
 - Some complementarity possible from CMS/ATLAS
- Many ideas not explored, low hanging fruits
 - Only decays of Λ_b have been studied!
- But: need theoretical and experimental progress on many fronts: form-factors, knowledge of normalisation modes...
 - Absolute BF of Ξ_c and Ω_c (@ Belle II?) crucial inputs to measure production rates of Ξ_b and Ω_b precisely
- Expertise in Dortmund from both LHCb and theory sides, excellent collaboration opportunities also with other groups
- LHCb Upgrade in progress: potential to improve our triggers
- Interesting opportunities also with charm baryons

Questions?

Which configuration is easier?

20

Have rare decays been studied?

Why so?

Production rates

What humans of Rare Decays working group of the LHCb experiment published their papers on:

