Towards a precise theoretical determination of the B_s lifetime

Maria Laura Piscopo

Annual meeting of the German LHCb groups

Bonn 5 October 2020

Based on ArXiv:2004.09527 In collaboration with A. Lenz and A. Rusov

Motivation

 $\tau(B_s)/\tau(B_d)$ - Experimental status

Closer look ...

2 / 12

$au(B_s)/ au(B_d)$ - Theoretical status

♦ Use Heavy Quark Expansion (HQE) [Shifman, Voloshin '85]

$$\frac{\tau(B_s)}{\tau(B_d)} = \frac{\Gamma_b + \delta\Gamma_{B_d}}{\Gamma_b + \delta\Gamma_{B_s}} = 1 + \underbrace{\tau(B_s)\left(\delta\Gamma_{B_d} - \delta\Gamma_{B_s}\right)}_{0.0007 \pm 0.0025}$$
_[Kirk, Lenz, Rauh '17]

* Γ_b - leading contribution, free b-quark decay ~~ * $\delta\Gamma_{B_q}$ - subleading terms

- ♦ Multiple cancellations arise
- ◊ Unique possibility
 - * to compete with increasing experimental precision
 - * to validate HQE
 - $\ast\,$ to test for BSM scenarios and search for invisible decays

$\tau(B_s)/\tau(B_d)$ - New Physics

 $\diamond\,$ BSM contributions appear in the lifetime ratio as:

$$\frac{\tau(B_s)}{\tau(B_d)} \approx 1 + \underbrace{\tau(B_s) \left(\delta \Gamma_{B_d}^{\text{SM}} - \delta \Gamma_{B_s}^{\text{SM}}\right)}_{\text{theory}} + \underbrace{\left[\text{BR}(B_d \to X)^{\text{BSM}} - \text{BR}(B_s \to X)^{\text{BSM}}\right]}_{\text{indirectly constrained}}$$

- * NP could affect differently $b \to s$ and $b \to d$ transitions
- * Possibility to constrain BSM contributions at permille level
- * Hints for NP in $b \to s\mu^+\mu^-$ and $b \to c\tau^-\bar{\nu}_{\tau}$ processes might point towards large effects in $b \to s\tau^+\tau^-$ [Capdevila et al. '18; Bordone et al. '19]

The
$$B_s \to \tau^+ \tau^-$$
 decay

♦ Suppressed in the SM and experimentally very challenging:

$$\operatorname{Br}(B_s \to \tau^+ \tau^-) \begin{cases} =_{\operatorname{th.}} (7.73 \pm 0.49) \times 10^{-7} & \text{[Bobeth et al. '14]} \\ <_{\exp.} 6.8 \times 10^{-3} & \text{[LHCb, 1703.02508]} \end{cases}$$

 \diamond Correlations between $R_{D^{(*)}}$, $R_{J/\psi}$ and $B_s \to \tau^+ \tau^-, \dots$

 \diamond These big effects might be visible in $\tau(B_s)/\tau(B_d)$

Maria Laura Piscopo

The Heavy Quark Expansion

The theoretical framework

 $\diamond~$ From the optical theorem:

$$\Gamma_{B_q} = \frac{1}{2m_{B_q}} \operatorname{Im} \langle B_q | i \int d^4 x \, \mathcal{T} \{ \mathcal{L}_{\text{eff}}(x), \mathcal{L}_{\text{eff}}(0) \} | B_q \rangle$$

 \diamond OPE in inverse power of m_b : $p^{\mu} = m_b v^{\mu} + k^{\mu}$

$$\Gamma_{B_q} = \underbrace{\Gamma_3 \left< \mathcal{O}_3 \right>}_{\Gamma_b} + \underbrace{\Gamma_5 \frac{\left< \mathcal{O}_5 \right>}{m_b^2} + \Gamma_6 \frac{\left< \mathcal{O}_6 \right>}{m_b^3} + \dots + 16\pi^2 \Big[\tilde{\Gamma}_6 \frac{\left< \tilde{\mathcal{O}}_6 \right>}{m_b^3} + \tilde{\Gamma}_7 \frac{\left< \tilde{\mathcal{O}}_7 \right>}{m_b^4} + \dots \Big]}_{\delta \Gamma_{B_q}}$$

* $\Gamma_i, \tilde{\Gamma}_i$ - short distance coefficients

* $\mathcal{O}_d, \tilde{\mathcal{O}}_d$ - local quark operator of dimension d

*
$$\frac{\delta \Gamma_{B_q}^{(d)}}{\Gamma_b} \sim \left(\frac{k}{m_b}\right)^{d-3} \sim \left(\frac{1\,{\rm GeV}}{4.5\,{\rm GeV}}\right)^{d-3}$$
 - small parameter

Maria Laura Piscopo

The theoretical framework

$$\Gamma_{B_q} = \Gamma_3 \left< \mathcal{O}_3 \right> + \Gamma_5 \frac{\left< \mathcal{O}_5 \right>}{m_b^2} + \Gamma_6 \frac{\left< \mathcal{O}_6 \right>}{m_b^3} + \dots + 16\pi^2 \Big[\tilde{\Gamma}_6 \frac{\left< \tilde{\mathcal{O}}_6 \right>}{m_b^3} + \tilde{\Gamma}_7 \frac{\left< \tilde{\mathcal{O}}_7 \right>}{m_b^4} + \dots \Big]$$

Maria Laura Piscopo Annual meeting of the German LHCb groups, 5 October 2020

$The\ theoretical\ framework$

 $\diamond\,$ What has been included so far . . .

	"Two – loop" contributions			"One – loop" contributions	
		$\mathcal{O}(1)$	$\mathcal{O}(lpha_s)$	$\mathcal{O}(1)$	$\mathcal{O}(lpha_s)$
$\mathcal{O}(1)$		✓	1	_	_
$\mathcal{O}\left(rac{1}{m_b^2} ight)$		1	×	_	_
$\mathcal{O}\left(\frac{1}{m_b^3}\right)$		×	×	1	\checkmark
$\mathcal{O}\left(\frac{1}{m_h^4}\right)$		×	×	1	×

Maria Laura Piscopo

Some peculiarities

- ♦ Suppression of $1/m_b^2$ contributions
- \diamond "One-loop" $1/m_b^3$ corrections expected to be dominant, but

q = d, s

$$\delta \tilde{\Gamma}_{B_q}^{(6)} \sim \left\{ \underbrace{\left(\frac{C_1^2}{3} + 2\,C_1C_2 + 3\,C_2^2\right)}_{\approx 10^{-2}} \left(\underbrace{\left(\frac{B_2^q}{s_1} - \underbrace{B_1^q}_{\approx 1}\right) + \mathcal{O}}_{\approx 1} \underbrace{\left(\frac{m_c^2}{m_b^2}\right)}_{\approx 0.05} \right) + \underbrace{2C_1^2}_{\approx 2} \underbrace{f(\epsilon_2, \epsilon_1)}_{\text{color suppr.}} \right\}$$

- ◊ Strong suppression despite loop enhancement
- \diamond "Two-loop" $1/m_b^3$ corrections found sizeable in the SL case

[Gremm, Kapustin, '96]

* What about the NL case?

Contribution of the Darwin term for NL decays

Result

- Computation done by two independent groups [Lenz, Piscopo, Rusov, '20] [Mannel, Moreno, Pivovarov, '20] [Moreno, '20]
- \diamond Large relative size of 2-7%

Maria Laura Piscopo

Conclusion

 $\diamond\,$ Large coefficient of the Darwin operator, but

$$\frac{\tau(B_s)}{\tau(B_d)} = 1 + \left\{ \underbrace{\Gamma_5\left(\langle \mathcal{O}_5 \rangle_{B_d} - \langle \mathcal{O}_5 \rangle_{B_s}\right)}_{\checkmark} \underbrace{\frac{1}{m_b^2}}_{\checkmark} + \underbrace{\Gamma_6}_{\checkmark} \underbrace{\left(\langle \mathcal{O}_6 \rangle_{B_d} - \langle \mathcal{O}_6 \rangle_{B_s}\right)}_{\checkmark} \underbrace{\frac{1}{m_b^3}}_{\checkmark} + \left[\underbrace{\left(\tilde{\Gamma}_6^{B_d} - \tilde{\Gamma}_6^{B_s}\right) \langle \tilde{\mathcal{O}}_6 \rangle_{B_d}}_{\checkmark} - \tilde{\Gamma}_6^{B_s} \underbrace{\left(\langle \tilde{\mathcal{O}}_6 \rangle_{B_s} - \langle \tilde{\mathcal{O}}_6 \rangle_{B_d}\right)}_{\checkmark} \right] \frac{1}{m_b^3} + \dots \right\} \tau(B_s)$$

 $\diamond~SU(3)_f$ violation effects crucial

Further steps:

* Determination of
$$\left(\langle \mathcal{O}_6 \rangle_{B_d} - \langle \mathcal{O}_6 \rangle_{B_s}\right)$$
 [Lenz, Piscopo, Rusov]

* Computation of
$$\langle \tilde{\mathcal{O}}_6 \rangle_{B_s}$$
 [King, Lenz, Rauh, Witzel]

HQET SumRules Lattice

Maria Laura Piscopo

Final remarks on $B_s \to J/\psi \phi$

 $\diamond \phi_s$

- * Quite precisely measured $(-21 \pm 31) \text{ mrad}$ [HFLAV '19]
- * In the SM (-37 ± 1) mrad if penguin pollution neglected $(\pm 17 \text{ mrad})$
- * Originally very promising BSM observable, but experimental precision approaching penguin size
- * Not clear how to improve theory from first-principles

 $\diamond \ \Gamma_s, \ \Delta \Gamma_s$

- * Quite precisely measured but experimental discrepancy
- * Theory can be systematically improved hard but doable
- * Huge effort going into perturbative QCD and non-perturbative methods (HQET Sum Rules, lattice)

Thanks for the attention

Backup slides

Dimension-six operator basis

Two-quark operators

$$\mathcal{O}_{\rho_D} = \bar{b}_v (iD_\mu)(iv \cdot D)(iD^\mu) b_v$$

$$\mathcal{O}_{\rho_{LS}} = \bar{b}_v (iD_\mu)(iv \cdot D)(iD_\nu)(-i\sigma^{\mu\nu}) b_v$$

Four-quark operators

$$\tilde{\mathcal{O}}_{6,1}^{(q)} = (\bar{b}_v^i \gamma_\mu (1-\gamma_5) q^i) (\bar{q}^j \gamma^\mu (1-\gamma_5) b_v^j) \quad \tilde{\mathcal{O}}_{6,2}^{(q)} = (\bar{b}_v^i \psi (1-\gamma_5) q^i) (\bar{q}^j \psi (1-\gamma_5) b_v^j)$$

Parametrisation of four-quark operators matrix elements

$$\langle B_{q'} | \, \tilde{\mathcal{O}}_{6,i}^{(q)} \, | B_{q'} \rangle = A_i \, m_B^2 \, f_B^2 \left(\mathcal{B}_i^{(q)}(B) \, \delta_{qq'} + \tau_i^{(q)}(B) \right)$$

with $A_1 = A_3 = 1$, $A_2 = A_4 = (m_B/(m_b + m_q))^2$, q = u, d, s

Quark Hadron Duality

Experiment at hadron level, calculation at quark-gluon level

$$\text{QHD violation} \equiv \begin{cases} 1/m_Q \text{ corrections in } \Gamma \\ \text{oscillatory terms in } \Gamma \end{cases}$$

 $\star\,$ In the '90s appears discrepancy:

$$rac{ au(\Lambda_b)}{ au(B_d)} = egin{cases} \sim 0.96 & \text{[Shifman, Voloshin '86} \ 0.798 \pm 0.034 & \text{[HFAG '03]} \ \end{cases}$$

 \star 2019 status:

$$\frac{\tau(\Lambda_b)}{\tau(B_d)} = \begin{cases} 0.935 \pm 0.054 & \text{[Lenz '14]} \\ 0.969 \pm 0.006 & \text{[HFLAV '19]} \end{cases}$$

♦ Shift of 4.9σ

Quark Hadron Duality

Experiment at hadron level, calculation at quark-gluon level

- $\star\,$ Compare HQE with experiments:
 - $\diamond~$ No sign of any significant deviation
 - $\diamond \Delta \Gamma_s$ highly sensitive (fewer states, smaller phase space)
 - * Good agreement
- $\star\,$ Simplified models of QCD:
 - $\diamond\,$ SV limit: no duality violation for SL and NL decays

[Boyd, Grinstein, Manohar '95; Grinstein, Savrov '03]

 \diamond 'tHooft model: no $1/m_Q$ corrections, tiny oscillatory terms

[Grinstein, Lebed '97, '98, '01]

[Bigi, Shifman, Uraltsev, Vainshtein '98, '99, '00]