$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis using the full Run 1+2 sample FSP Meeting

H. Jage, C. Langenbruch, L. Carus, E. Smith, T. Oeser

RWTH Aachen, Germany

October 5, 2020

- B⁰ decays via $b \rightarrow s$ flavour changing neutral current (FCNC)
- Forbidden in the SM at tree-level
- High sensitivity to New Physics due to high suppression in SM
- Probe Λ_{NP} up to $\mathcal{O}(100 \text{ TeV})$ [A. Buras, arxiv:1505.00618]
- Angular analysis gives access to set of q^2 dependent observables
 - \blacksquare Less affected by theoretical uncertainties than ${\cal B}$

- Run 1+2016 result [PRL 125 (2020) 011802] published
- Very good agreement between Run 1 and 2016 data samples
- Global tension increased: 3.0σ (Run 1) $\rightarrow 3.3 \sigma$ (Run 1 + 2016)
- Update to full Run2 dataset to clarify

- LHCb data: Run1 and 2016-2018 (Integrated luminosity 8.8 fb⁻¹)
- Improved selection ightarrow Increased efficiency and background rejection
 - \blacksquare Tuned PID selection \rightarrow increased peaking background suppression
 - Improved combinatorial BDT \rightarrow increased selection efficiency
 - Allows to widen $m_{K\pi}$ window to $[745.9, 1095.9]\,{
 m MeV}/c^2$

Angular Analysis

Angular Angular description of the decay

Decay fully described by three angles $\Omega = (\theta_l, \theta_K, \phi) + q^2$ and $m_{K\pi}$ $m_{K\pi}$ dependence now directly included into PDF as Breit-Wigners
Previously: $m_{K\pi}$ shape fitted integrated over decay angles $\frac{1}{d(\Gamma + \overline{\Gamma})/dq^2} \frac{\overline{\Gamma}}{d\Omega dq^2} \frac{1}{dm_{K\pi}} = \frac{9}{32\pi} \left[\frac{S_1^2 \pm A_1^2}{2} \sin^2 \theta_K + \frac{S_1^2 \pm A_1^2}{2} \cos^2 \theta_K + (\frac{S_2^2 \pm A_2^2}{2} \sin^2 \theta_K + \frac{S_2^2 \pm A_2^2}{2} \cos^2 \theta_K) \cos 2\theta_\ell + \frac{S_3^2 \pm A_3}{2} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{S_4 \pm A_4}{2} \sin 2\theta_K \sin 2\theta_\ell \cos \phi$ $F_L = -S_2^c$ $+ \frac{S_3 \pm A_3}{2} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + \frac{S_4 \pm A_4}{2} \sin^2 \theta_K + \frac{S_6^2 \pm A_6^2}{2} \cos^2 \theta_K) \cos \theta_\ell$ $A_{FB} = \frac{3}{4}S_6^s$ $+ \frac{S_7 \pm A_7}{2} \sin 2\theta_K \sin \theta_\ell \cos \phi + (\frac{S_6^2 \pm A_6^2}{2} \sin^2 \theta_K + \frac{S_6^2 \pm A_6^2}{2} \cos^2 \theta_K) \cos \theta_\ell$ $+ \frac{S_9 \pm A_9}{2} \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \sin 2\theta_\ell \sin \phi + \frac{S_9 \pm A_9}{2} \sin 2\theta_K \sin 2\theta_\ell \sin \phi + \frac{S_9 \pm A_9}{2} \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_$

👯 L. Carus (RWTH), October 5, 2020

Aim to also publish observables from P/S-Wave interference terms

$$\frac{1}{\mathsf{d}(\Gamma+\bar{\Gamma})/\mathsf{d}q^2} \left| \frac{\mathsf{d}^{5} \overleftarrow{\Gamma}}{\mathsf{d}q^2 \, \mathsf{d}m_{K\pi} \, \mathsf{d}\cos\theta_\ell \, \mathsf{d}\cos\theta_\ell \, \mathsf{d}\phi} = (1-F_{\rm S}) \frac{9}{32\pi} \sum_{i \in \mathsf{P-wave}} \frac{1}{2} (S_i \pm A_i) f_i(\cos\theta_\ell, \cos\theta_K, \phi) |\mathcal{B}\mathcal{W}_{\rm P}(m_{K\pi})|^2 \\
+ \frac{3}{16\pi} \Big[\left(\frac{1}{2} (S_{10} \pm A_{10}) + \frac{1}{2} (S_{12} \pm A_{12}) \cos 2\theta_\ell \right) \times |\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})|^2 \\
+ \frac{1}{2} \cos\theta_K \left((S_{11}^{\mathsf{re}} \pm A_{12}^{\mathsf{re}}) \times \operatorname{Re}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] - (S_{11}^{\mathsf{in}} \pm A_{11}^{\mathsf{in}}) \times \operatorname{Im}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] \right) \\
+ \frac{1}{2} \cos\theta_K \cos 2\theta_\ell \left((S_{13}^{\mathsf{re}} \pm A_{13}^{\mathsf{re}}) \times \operatorname{Re}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] - (S_{11}^{\mathsf{in}} \pm A_{11}^{\mathsf{in}}) \times \operatorname{Im}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] \right) \\
+ \frac{1}{2} \sin\theta_K \sin 2\theta_\ell \cos\phi \left((S_{14}^{\mathsf{re}} \pm A_{14}^{\mathsf{re}}) \times \operatorname{Re}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] - (S_{14}^{\mathsf{in}} \pm A_{14}^{\mathsf{in}}) \times \operatorname{Im}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] \right) \\
+ \frac{1}{2} \sin\theta_K \sin 2\theta_\ell \cos\phi \left((S_{15}^{\mathsf{re}} \pm A_{15}^{\mathsf{re}}) \times \operatorname{Re}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] - (S_{15}^{\mathsf{in}} \pm A_{15}^{\mathsf{in}}) \times \operatorname{Im}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] \right) \\
+ \frac{1}{2} \sin\theta_K \sin\theta_\ell \cos\phi \left((S_{15}^{\mathsf{re}} \pm A_{15}^{\mathsf{re}}) \times \operatorname{Re}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] - (S_{15}^{\mathsf{in}} \pm A_{15}^{\mathsf{in}}) \times \operatorname{Im}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] \right) \\
+ \frac{1}{2} \sin\theta_K \sin\theta_\ell \sin\theta_\ell \sin\phi \left((S_{16}^{\mathsf{re}} \pm A_{16}^{\mathsf{re}}) \times \operatorname{Im}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] + (S_{16}^{\mathsf{in}} \pm A_{16}^{\mathsf{in}}) \times \operatorname{Re}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] \right) \\
+ \frac{1}{2} \sin\theta_k \sin2\theta_\ell \sin\phi \left((S_{16}^{\mathsf{re}} \pm A_{16}^{\mathsf{re}}) \times \operatorname{Im}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] + (S_{16}^{\mathsf{in}} \pm A_{17}^{\mathsf{in}}) \times \operatorname{Re}[\mathcal{B}\mathcal{W}_{\rm S}(m_{K\pi})\mathcal{B}\mathcal{W}_{\rm P}^{\mathsf{r}}(m_{K\pi})] \right) \right) \\$$

Observables measured in bins of q^2

Angular Analysis | S-Wave part of the PDF

- Reconstruction and selection distort decay angles, q^2 and $m_{K\pi}$
- Acceptance shape parameterized using Legendre polynomials

$$\epsilon = \sum_{k,l,m,n,o} c_{klmno} P(\cos(\theta_l), k) P(\cos(\theta_K), l) P(\phi, m) P(q^2, n) P(m(K\pi), o)$$

c_{klmno} calculated with the method of moments

variable	order
$\cos(heta_l)$	4
$\cos(heta_K)$	5
ϕ	6
q^2	5
$m(K\pi)$	1

Table: Maximum orders of polynomials

Angular Analysis | S-Wave part of the PDF

RWTH ACCEPtance projections on angles and q^2

Parameterization describes the acceptance shape well

$\begin{array}{c} \underset{\text{AACHEN}}{\text{RAUBLE Analysis}} & \vdash \text{Fit to } B^0 \rightarrow J/\psi \, K^{*0} \\ \end{array} \\ \xrightarrow{\text{AACHEN}} & \text{Fit validation on } B^0 \rightarrow J/\psi \, K^{*0} \\ \xrightarrow{\text{Control mode}} \end{array}$

Validate acceptance on the control mode

Overall good agreement of projection of 5D PDF on data

- Mismodelling in *B*-mass from residual $\Lambda_b^0 \rightarrow p\pi^-\mu^+\mu^-$ backgrounds
- Small discrepancy from exotica in $\cos heta_K$, only effects control mode

Preliminary results for control mode fit

Parameter	Sim. fit	PhysRevD 88 052002
F_L	0.5642 ± 0.0006	0.572 ± 0.008
S_3	-0.0029 ± 0.0008	-0.013 ± 0.010
S_4	-0.2444 ± 0.0009	-0.250 ± 0.006
S_5	0.0017 ± 0.0009	0
A_{FB}	-0.0011 ± 0.0005	0
S_7	0.0008 ± 0.0009	0
S_8	-0.0500 ± 0.0009	-0.048 ± 0.007
S_9	-0.0851 ± 0.0008	-0.084 ± 0.006

Good agreement with dedicated analysis [PhysRevD 88 052002]

- Validate 5d fit and acceptance on sets of 500 toys for each q^2 bin
- Generated and fitted using expected signal yield for Run 1 + Run 2
- Ensure correct coverage of uncertainties / unbiased fit

12 / 17

- Pull mean compatible with zero \rightarrow no bias in this bin
- Pull width slightly above one \rightarrow slight undercoverage

- Some bins show signs of bias/undercoverage
- Reasons: Low statistics/values close to physical boundaries
- Will employ coverage correction (Feldman-Cousins implemented as in [JHEP 02 (2016) 104])

Sensitivity with the new 5D PDF is improved compared to previous 4D+1D PDF¹ employed in [PRL 125 (2020) 011802]

¹Evaluated using same yields/ $m_{K\pi}$ range

L. Carus (RWTH), October 5, 2020

- Systematic uncertainties evaluated using high statistics toys
- Toys generated with alternative model/acceptance
- Fitted twice with nominal and alternative model
- Preliminary results with 4-20 million events per q^2 bin
- Uncertainties on similar level compared to previous iteration

Source (Preliminary)	F_L	$S_{1}^{c} - S_{9}$	$A_{FL} - A_9$	$F_S - S_{17}^{\text{re/im}}$	$A_{FS} - A_{17}^{\rm re/im}$
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.001	< 0.01	< 0.003
Acceptance polynomial order	< 0.015	< 0.015	< 0.001	< 0.02	< 0.001
Data-simulation differences	< 0.01	< 0.03	< 0.001	< 0.015	< 0.001
Acceptance variation with q^2	< 0.01	< 0.01	< 0.001	< 0.01	< 0.001
$m(K\pi)$ S-Wave model	< 0.01	< 0.015	< 0.001	< 0.015	< 0.003
Angular background model	< 0.01	< 0.01	< 0.001	< 0.01	< 0.001
$m(K\pi)$ background model	< 0.01	< 0.01	< 0.001	< 0.015	< 0.001
Peaking background	< 0.01	< 0.01	< 0.003	< 0.03	< 0.004
$m(K\pi\mu\mu)$ model	< 0.01	< 0.01	< 0.001	< 0.01	< 0.001

Measurement still statistically dominated

Significant improvement on the last analysis:

- Improved selection
- Wider $m_{K\pi}$ window used, giving better sensitivity
- $m_{K\pi}$ dependence included into angular fit, improved sensitivity
- Simultaneous fit of CP-symmetries and asymmetries
- \blacksquare Fit validation using $B^0 \to J/\psi \, K^{*0},$ good agreement with dedicated amplitude analysis
- Fit validation using toy studies, Feldmann Cousins will be used for coverage correction.
- Calculated most of the relevant systematic uncertainties

Backup

L. Carus (RWTH), October 5, 2020

RWTH Angular coefficients I_i' and corresponding $f_i(ec\Omega)$

i	I'_i	f_i
1s	$\tfrac{3}{4}(A_{\parallel}^L ^2+ A_{\perp}^L ^2+ A_{\parallel}^R ^2+ A_{\perp}^R ^2)\times \mathcal{BW}_{\mathbf{P}} ^2$	$\sin^2\theta_K$
1c	$(A_0^L ^2 + A_0^R ^2) \times \mathcal{BW}_P ^2$	$\cos^2\theta_K$
2s	$\tfrac{1}{4}(A_{\parallel}^L ^2+ A_{\perp}^L ^2+ A_{\parallel}^R ^2+ A_{\perp}^R ^2)\times \mathcal{BW}_{\mathbf{P}} ^2$	$\sin^2\theta_K\cos2\theta_\ell$
2c	$(- A_0^L ^2 - A_0^R ^2) \times \mathcal{BW}_{\mathbf{P}} ^2$	$\cos^2\theta_K\cos2\theta_\ell$
3	$\tfrac{1}{2}(A_{\perp}^L ^2- A_{\parallel}^L ^2+ A_{\perp}^R ^2- A_{\parallel}^R ^2)\times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin^2\theta_K \sin^2\theta_\ell \cos 2\phi$
4	$\sqrt{\frac{1}{2}} \operatorname{Re} \left[A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*} \right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin 2\theta_K \sin 2\theta_\ell \cos \phi$
5	$\sqrt{2} \operatorname{Re} \left[A_0^L A_\perp^{L*} - A_0^R A_\perp^{R*} \right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin 2\theta_K \sin \theta_\ell \cos \phi$
6s	$2 \operatorname{Re} \left[A_{\parallel}^{L} A_{\perp}^{L*} - A_{\parallel}^{R} A_{\perp}^{R*} \right] \times \mathcal{BW}_{P} ^{2}$	$\sin^2\theta_K\cos\theta_\ell$
6c	0	$\cos^2\theta_K\cos\theta_\ell$
7	$\sqrt{2} \operatorname{Im} \left[A_0^L A_{\parallel}^{L*} - A_0^R A_{\parallel}^{R*} \right] \times \mathcal{BW}_P ^2$	$\sin 2\theta_K \sin \theta_\ell \sin \phi$
8	$\sqrt{\frac{1}{2}} \operatorname{Re} \left[A_0^L A_{\perp}^{L*} + A_0^R A_{\perp}^{R*} \right] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin 2\theta_K \sin 2\theta_\ell \sin \phi$
9	$\mathrm{Im} \big[A_{\parallel}^L A_{\perp}^{L*} + A_{\parallel}^R A_{\perp}^{R*} \big] \times \mathcal{BW}_{\mathrm{P}} ^2$	$\sin^2\theta_K \sin^2\theta_\ell \sin 2\phi$
10	$\frac{1}{2}(A_{\mathrm{S}}^L ^2 + A_{\mathrm{S}}^R ^2) \times \mathcal{BW}_{\mathrm{S}} ^2$	1
11	$\sqrt{3} \operatorname{Re} \left[(A_{\mathrm{S}}^{L} A_{0}^{L*} + A_{\mathrm{S}}^{R} A_{0}^{R*}) \times \mathcal{BW}_{\mathrm{S}} \mathcal{BW}_{\mathrm{P}}^{*} \right]$	$\cos \theta_K$
12	$-\frac{1}{2}(A_{\mathrm{S}}^{L} ^{2}+ A_{\mathrm{S}}^{R} ^{2})\times \mathcal{BW}_{\mathrm{S}} ^{2}$	$\cos 2\theta_\ell$
13	$-\sqrt{3} \operatorname{Re} \big[(A_{\mathrm{S}}^{L} A_{0}^{L*} + A_{\mathrm{S}}^{R} A_{0}^{R*}) \times \mathcal{BW}_{\mathrm{S}} \mathcal{BW}_{\mathrm{P}}^{*} \big]$	$\cos\theta_K\cos2\theta_\ell$
14	$\sqrt{\frac{3}{2}} \operatorname{Re}\left[\left(A_{\mathrm{S}}^{L}A_{\parallel}^{L*} + A_{\mathrm{S}}^{'R}A_{\parallel}^{'R*}\right) \times \mathcal{BW}_{\mathrm{S}}\mathcal{BW}_{\mathrm{P}}^{*}\right]$	$\sin\theta_K\sin2\theta_\ell\cos\phi$
15	$2\sqrt{\frac{3}{2}} \operatorname{Re}\left[\left(A_{S}^{L}A_{\perp}^{L*} - A_{S}^{R}A_{\perp}^{R*}\right) \times \mathcal{BW}_{S}\mathcal{BW}_{P}^{*}\right]$	$\sin\theta_K\sin\theta_\ell\cos\phi$
16	$2\sqrt{\frac{3}{2}} \operatorname{Im}\left[\left(A_{S}^{L}A_{\parallel}^{L*} - A_{S}^{R}A_{\parallel}^{R*}\right) \times BW_{S}BW_{P}^{*}\right]$	$\sin\theta_K\sin\theta_\ell\sin\phi$
17	$\sqrt{\frac{3}{2}} \operatorname{Im} \left[(A_{S}^{L} A_{\perp}^{L*} + A_{S}^{R} A_{\perp}^{R*}) \times BW_{S} BW_{P}^{*} \right]$	$\sin\theta_K\sin2\theta_\ell\sin\phi$

AACHEN The angular fit in [arxiv:2003.04831]

"4D+1D fit": Fit of the decay angles Ω, m_B, and the m_{Kπ} projection
 Reminder: P-wave (8 Observables)²

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \Big].$$
(2)

Full PDF including P-wave and S-wave (6 add. Observables)¹

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\bar{\Omega}} \Big|_{\mathrm{S+P}} &= (1 - F_{\mathrm{S}}) \frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\bar{\Omega}} \Big|_{\mathrm{P}} \\ &+ \frac{3}{16\pi} F_{\mathrm{S}} \sin^2 \theta_l + \frac{9}{32\pi} (S_{14} + S_{13} \cos 2\theta_l) \cos \theta_K \\ &+ \frac{9}{32\pi} (S_{14} \sin 2\theta_l + S_{15} \sin \theta_l) \sin \theta_K \cos \phi \\ &+ \frac{9}{32\pi} (S_{16} \sin \theta_l + S_{17} \sin 2\theta_l) \sin \theta_K \sin \phi \,, \end{split}$$
(3)

- P-wave observables are scaled by $1 F_S$, reducing sensitivity
- Note the above expression are integrated over $m_{K\pi}$

²Definition of observables in terms of decay amplitudes in backup

RWTH $\stackrel{\scriptscriptstyle{\mathsf{Backup}}}{m_{K\pi}}$ dependence in 4D+1D fit

- Exploit $m_{K\pi}$ distribution in a simultaneous fit to constrain F_S
- P-wave amplitude dependency on $m_{K\pi}$ given by BW³

$$\begin{aligned} \mathcal{A}_{P}(m_{K\pi}) &= \sqrt{kp} \times B_{L_{B}}'(k,k_{0},d) \left(\frac{k}{m_{B}}\right)^{L_{B}} \times B_{L_{K^{*}}}'(p,p_{0},d) \left(\frac{p}{m_{K\pi}}\right)^{L_{K^{*}}} \\ &\times \frac{1}{m_{K^{*}}^{2} - m_{K\pi}^{2} - im_{K^{*}}\Gamma(m_{K\pi})} \end{aligned}$$
(4)

S-wave amplitude parameterisation Isobar or LASS (below)²

$$\begin{aligned} \mathcal{A}_{S}(m_{K\pi}) &= \sqrt{kp} \times B_{L_{B}}'(k,k_{0},d) \left(\frac{k}{m_{B}}\right)^{L_{B}} \times B_{L_{K_{0}^{*}}}'(p,p_{0},d) \left(\frac{p}{m_{K\pi}}\right)^{L_{K_{0}^{*}}} \\ &\times \left(\frac{1}{\cot \delta_{B}-i} + e^{2i\delta_{B}} \frac{1}{\cot \delta_{R}-i}\right), \end{aligned}$$
(5)

The $m_{K\pi}$ projection is then (with $\xi_i = \int \epsilon f_i(\vec{\Omega}) \mathsf{d}\vec{\Omega}$)

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma+\bar{\Gamma})}{\mathrm{d}m_{K\pi}} \bigg|_{\mathrm{S}+\mathrm{P}} &= (1-F_S) \sum_{i=1}^{9} \frac{9}{32\pi} \xi_i S_i^{(s,c)} |\mathcal{A}'_P(m_{K\pi})|^2 \\ &+ \frac{3}{16\pi} [F_S \xi_{F_S} |\mathcal{A}'_S(m_{K\pi})|^2 \\ &+ (S_{S1}\xi_{S1} + S_{S2}\xi_{S2} + S_{S3}\xi_{S3}) \operatorname{Re} \left(\mathcal{A}'_S(m_{K\pi})\mathcal{A}_{P}^{*\prime}(m_{K\pi})\right) \\ &+ (S_{S4}\xi_{S4} + S_{S5}\xi_{S5}) \operatorname{Im} \left(\mathcal{A}'_S(m_{K\pi})\mathcal{A}_{P}^{*\prime}(m_{K\pi})\right) \end{split}$$
(6)

³Note these need to be normalised correctly

Idea: Use the full 5D decay rate instead

$$\frac{1}{\mathbf{d}(\Gamma+\bar{\Gamma})/\mathbf{d}q^2} \frac{\mathbf{d}^5(\Gamma+\bar{\Gamma})}{\mathbf{d}q^2 \mathbf{d}\vec{\Omega}\mathbf{d}m_{K\pi}} \Big|_{\mathbf{S}+\mathbf{P}} = (1-F_{\mathbf{S}}) \frac{1}{\mathbf{d}(\Gamma+\bar{\Gamma})/\mathbf{d}q^2} \frac{\mathbf{d}^4(\Gamma+\bar{\Gamma})}{\mathbf{d}q^2 \mathbf{d}\vec{\Omega}} \Big|_{\mathbf{P}} |\mathcal{A}'_P(m_{K\pi})|^2
+ \frac{3}{16\pi} F_{\mathbf{S}} \sin^2 \theta_l |\mathcal{A}'_S(m_{K\pi})|^2
+ \frac{9}{32\pi} (S_{11} + S_{13} \cos 2\theta_l) \cos \theta_K \operatorname{Re}(\mathcal{A}'_S(m_{K\pi})\mathcal{A}'^*_P(m_{K\pi}))
+ \frac{9}{32\pi} (S_{14} \sin 2\theta_l + S_{15} \sin \theta_l) \sin \theta_K \cos \phi \operatorname{Re}(\mathcal{A}'_S(m_{K\pi})\mathcal{A}'^*_P(m_{K\pi}))
+ \frac{9}{32\pi} (S_{16} \sin \theta_l + S_{17} \sin 2\theta_l) \sin \theta_K \sin \phi \operatorname{Im}(\mathcal{A}'_S(m_{K\pi})\mathcal{A}'^*_P(m_{K\pi}))$$
(7)

- Uses the available information in a more optimal way
- Allows for better control of S-wave, and S-wave/P-wave interference
- Reduces potential issues from physical F_S boundary
- Expect highest precision in wide $m_{K\pi}$ window

- Nominal background model: Second order Chebyshev polynomial
- Fit background from upper mass sideband with fourth order polynomial in different bins of q^2
 - BDT cut removed for increased statistics
- High statistics toys generated with alternative background model
- Fit twice with both background models

RWTH ${}^{\scriptscriptstyle{ extsf{Backup}}}_{\scriptscriptstyle{ extsf{ACHEN}}}$ shape: Combinatorial background

- Nominal background model: First order Chebyshev polynomial
- Fit background from upper mass sideband with fourth order polynomial in different bins of q^2
 - BDT cut removed for increased statistics
- High statistics toys generated with alternative background model
- Fit twice with both background models

- Systematic for potential mismodeling of the $m(K\pi\mu\mu)$ signal shape
- Double Gaussian (below) used as alternative signal model
 - ${\hfill}$ Parameters taken from fit to $B^0 \to J/\Psi K^{*0}$ events
- Produce high statistics toys with double Gaussian model

Fit twice with both models

Assign systematic to cover mismodeling of the S-Wave m(Kπ) shape
 Alternative model: ISOBAR model

 $\mathcal{A}_{ISO}(m_{K\pi}) = |r_{f_{800}}| e^{iarg\delta_{f_{800}}} \mathcal{A}_{f_{800}}(m_{K\pi}) + (1 - |r_{f_{800}}|) \mathcal{A}_{K_0^{*0}(1430)}(m_{K\pi})$

- Parameters taken from PDG or control mode fit
- High statistics toys generated with ISOBAR model
- Fit twice with LASS and ISOBAR model

AACHEN Peaking backgrounds

- Estimate effect of remaining peaking background on fit result
- Generate toy peaking background events using data
 - Select background events (blue) from data by inverting PID cuts
 - Model angular and mass distribution using kernel estimation (red)
- Inject background events into high statistics toys
- Could move to simulation for kernel estimation in the future

AACHEN Maximum order of acceptance description

- Maximum order of acceptance description is limited
- Calculate acceptance increasing orders by 3 in all dimensions
- High statistics toys generated with alternative acceptance
- Fit twice with both acceptance functions
- Below: acceptance projection for $\cos \theta_K$, q^2 and $\cos \theta_\ell$, using nominal and higher orders

- Acceptance is evaluated at fixed point in narrow q^2 bins
- Evaluate acceptance at at different q^2 values
 - Mean of q^2 in each bin
 - Half way between bin center and upper/lower bin edge
- Produce high statistics toys with alternative acceptance values
- Fit twice with both acceptance settings (i.e. generate using evaluation point in either lower/upper half of bin)
- Select largest systematic for different q^2 values in each bin

RWTH Backup Statistical uncertainty of angular acceptance

- Size of MC simulated samples is limited
- Estimate statistical effect by bootstrapping of simulation
- Generate high statistic toy using bootstrapped acceptance
- Fit twice with nominal and varied acceptance

AACHEN Data-Simulation agreement

- Differences corrected using re-weighting of kinematic distribution
- Conservative systematic: Recalculate acceptance without kinematic corrections
- Generate high statistic toy using uncorrected acceptance
- Fit twice with both acceptances

Ongoing studies:

- Differences in momentum distributions of kaons and pions
- Residual differences in PID distributions
- L0 trigger corrections

RWTH 5D Acceptance and $m_{K\pi_1}$

- 1D $m(K\pi)$ projection not completely flat
- $m(K\pi)$ acceptance effects do not fully factorize

