Real-time Analysis Project for Run 3 at LHCb

Peilian Li Heidelberg University

FSP Meeting, Bonn

Oct 6st, 2020

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Outline

- Run 1 & 2 trigger at LHCb
- The challenges for upgrade trigger
- The upgrade trigger proposal RTA
 - First high level trigger (HLT1)
 - Real-time alignment & calibration
 - Second high level trigger (HLT2)
 - Persistency model
- Summary

Run 1 & 2 Trigger (Conventional)

- Hardware trigger: $40 \rightarrow 1$ MHz read-out limits (fixed-latency trigger)
 - based on muon detector and calorimeters

- HLT1 (partial) and HLT2 (full) event reconstruction split in Run 2
- Buffer data to disk to perform real time alignment and calibration
- Offline quality reconstruction and selection in the real-time processing

LHCb Upgrade

• Luminosity of $2x10^{33}$ cm⁻²s⁻¹, $\sqrt{s} = 14$ TeV

- ATLAS/CMS mainly look at the very rare event
 → lower event rate
- LHCb is interested in b and c hadrons → much higher event rate
- Pioneering role of LHCb in real time analysis & novel storage concepts

LHCb Upgrade

• Luminosity of $2x10^{33}$ cm⁻²s⁻¹, $\sqrt{s} = 14$ TeV

- ATLAS/CMS mainly look at the very rare event
 → lower event rate
- LHCb is interested in b and c hadrons → much higher event rate
 First challenge

Hardware trigger is not an option

• L0 rate limit of 1 MHz saturates fully hadronic modes already in Run 2

LHCb Upgrade

LHCb-PUB-2014-027

- Luminosity of $2x10^{33}$ cm⁻²s⁻¹, $\sqrt{s} = 14$ TeV
- More PVs, more tracks, almost all events will have b or c hadron
- Signal rates up to ~ MHz, hardware trigger is not an option

Second challenge

How to select the interested beauty and charm hadrons from the large mount of b or c hadrons

LHCb Upgrade Trigger

 Remove L0 trigger, read out the full detector at 30 MHz and make all data available for variable latency processing
 Earlier & less money

→Workload of ATLAS/CMS in their high-level HL-LHC trigger in 6 years

- Real time alignment and calibration & Full offline-quality reconstruction
 - → Have best resolution for HLT2 selections

LHCb Upgrade Trigger

 Remove L0 trigger, read out the full detector at 30 MHz and make all data available for variable latency processing
 Earlier & less money

→Workload of ATLAS/CMS in their high-level HL-LHC trigger in 6 years

- Real time alignment and calibration & Full offline-quality reconstruction
 - → Have best resolution for HLT2 selections

First High Level Trigger (HLT1)

- Filter the 30 MHz pp collision to 1 MHz, must be fast and efficient
- Partial reconstruction
 - → Full charged track reconstruction
 - → Few inclusive single and two-track selections on bunch crossings

First High Level Trigger (HLT1)

Filter the 30 MHz pp collision to 1 MHz, must be fast and efficient

Partical reconstruction

* Every task is individually parallelizable

HLT1 Throughput

LHCb-FIGURE-2020-007

Achieved the requirement in 2019! More improvements afterwards

GPU & CPU HLT1

Both GPU & CPU HLT1 achieved the designed performance successfully

- → Extensive studies and developments on both GPU & CPU architectures
- → Brand new algorithms and ideas on pattern recognition developed on both architectures
- → Final decision to take GPU for HLT1 in April 2020

→All the work and experience gained for HLT1 reconstruction using CPUs crucial to achieve large speed-up for the HLT2 reconstruction

- Reduce network
 bandwidth between EB and filter farms
- Free up filter farm CPU for HLT2 only

GPU & CPU HLT1

• Both GPU & CPU HLT1 achieved the designed performance successfully

- → Extensive studies and developments on both GPU & CPU architectures
- → Brand new algorithms and ideas on pattern recognition developed on both architectures
- → Final decision to take GPU for HLT1 in April 2020

→All the work and experience gained for HLT1 reconstruction using CPUs crucial to achieve large speed-up for the HLT2 reconstruction

- Efficient and pure selections require offline-quality reconstruction at the HLT2 level → Aligned and calibrated detector
- Use output bandwidth more efficiently

Journal of Physics: Conference Series, 664 (2015)

- Better mass resolution
- Better particle identification
- Less background

- Efficient and pure selections require offline-quality reconstruction at the HLT2 level
 Aligned and calibrated detector
 Better mass resolution
- Use output bandwidth more efficiently

- Better mass resolution
- Better particle identification
- Less background

JHEP 2012, 37 (2012)

- Same strategy as Run 2
- Same disk buffer as Run 2 but 10x more data
 - Alignment not only trackers but also RICH, MUON, Calo
 - Should be very fast!
 - Several minutes in Trackers & several hours for RICH & MUON

((~7min),(~12min),(~3h),(~2h)) - time needed for both data accumulation and running the task

Contributors: F. Archilli, G. Frau, R. Kopecna

Same strategy as Run 2

- HLT2 reconstruction is critical to both physics output and physics quality
 - → Full, offline-fidelity event reconstruction on at least 1 MHz
 - → Charged track reconstruction with no momentum selection

Current HLT2 Throughput

- Far from the requirement but several solutions have been implemented
 - → Remove the redundancy in the track reconstruction / apply track fit only to the tracks used in physics analyses
 - → More optimizations/rewriting of the algorithms are in good progress
 - → Monitor both the speed and the quality of outputs
 - → Concentrated effort shifts from HLT1 to HLT2 now

HLT2 Selection

Contributors: N. Nolte, P. Li, G. Meier, etc

- O(1000) inclusive and exclusive selections (O(400) implemented)
 - Bandwidth sharing optimized using a genetic algorithm
- Framework:
 - Data flow: Configurable algorithms properties & user defined inputs/outputs
 - Control flow: what should be run and when to stop
- Fixed output bandwidth of 10 GB/s
- New combination algorithms implemented to speed up the selection
- Studies on bandwidth & efficiency for various decay channels ongoing

Persistency Model: what is saved to disk

- Bandwidth [MB/s] ~ Trigger output rate [kHz] × average event size [kB]
 - → Trigger bandwidth is crucial, not only trigger rate but also event size
 - → Real-time selection occurs with offline quality
 - → Only store high-level objects reconstructed in real-time
 - → Reduced event format: reduction of event size Higher efficiency for the same bandwidth
- Turbo stream developed and commissioned in Run 2 as Baseline for Run 3

Persistency Model

LHCB-TDR-018

- Turbo stream: only HLT2 signal candidates (minimum output)
 - Optionally: (parts of) pp vertex (e.g. "cone" around candidate for spectroscopy)
 - Limitations: cannot refit tracks and PVs offiline, rerun flavor tagging etc.
 - Advantage: Event size O(10) smaller than RAW
- Full stream: all reconstructed objects in the event + selected RAW banks
- TurCal stream: HLT2 candidates and RAW banks
 - Used for offline calibration and performance measurement

Persistency Model

Real-time analysis reduces required resources by more than 2

Fraction of trigger output selecting pp collisions, not bunch crossings

- Reduced event size and no offline rerun are risky, requiring more careful evaluations and studies for the HLT2 selections
- Faster reconstruction algorithms would make more rooms for the selections, keep improving both

Summary

- LHCb is almost ready to face the MHz signal era, changing the trigger paradigm to RTA, pioneer in the real time processing
- From background rejection \rightarrow signal selection and characterization
- ✓ Partial event reconstruction (HLT1) at 30 MHz input rate using GPUs
- ✓ Full event reconstruction (HLT2) at 1 MHz input rate using CPUs
- ✓ Event rate & size reduction \rightarrow bandwidth reduction
- Turbo-mode selective persistency will be dominated in the upgrade

In the long term:

- Hybrid architecture in Run 3 would prepare us better for future upgrade
- R&D studies on optimal use of hybrid architectures (GPU/CPU/FPGA), remain flexible

Thanks for your attention!