Rare charm decays as probes of New Physics

Héctor Gisbert

TU Dortmund

In collaboration with R. Bause, M. Golz and G. Hiller.

Based on 1909.11108, 2004.01206, 2007.05001 and 2010.xxxxx.

Jahrestreffen der deutschen LHCb-Gruppen, October 6, 2020

H. Gisbert (TU Dortmund)

Rare charm decays as probes of New Physic

October 6, 2020 1 / 2

Charm physics is exceptional

Unique window to explore FCNCs in the up-sector!

2 Non-perturbative dynamics \rightarrow "Null tests" observables $\mathcal{O} \pm \delta \mathcal{O}$

Bird's-eye view of the playground:¹

- SM symmetries: $\mathcal{O}_{SM} = 0$.
- Small uncertainties: $\mathcal{O}_{\mathrm{SM}} \gg \delta \, \mathcal{O}_{\mathrm{SM}}.$
- Large hadronic effects to enhance small NP contributions.
- Sensitive to specific NP.

§ Very efficient GIM mechanism: $\sum_i \lambda_i = 0$ with $\lambda_i \equiv V_{ci}^* V_{ui}$.

$$\overset{c}{\longrightarrow}\overset{w}{\longrightarrow}\overset{w}{\longrightarrow}\overset{u}{\longrightarrow} = \sum_{i=d,s,b} \lambda_i f_i = \lambda_s \left[\left(f_s - f_d \right) + \frac{\lambda_b}{\lambda_s} \left(f_b - f_d \right) \right]$$

$$f_i \sim rac{m_i^2}{(4\pi)^2 M_W^2}$$
 , $\mathrm{Im}(\lambda_b/\lambda_s) \sim 10^{-3}$

Formidable place to search for BSM physics!

H. Gisbert (TU Dortmund)

Rare charm decays as probes of New Physic

EFT approach to charm physics de Boer, (2017), PhD thesis, TU Dortmund

9 Dynamical fields ϕ_i at μ_{EW} : $\phi_i^{\text{SM}} = q_i, \ell_i, g, ...$

3 Symmetries to build all $O_j(\phi_i)$ up to $(p^2/\mu_{EW}^2)^n$, $\mathcal{H}_{eff} = \sum_i C_i O_i$

$$\begin{split} O_{1}^{q} &= (\overline{u}_{L}\gamma_{\mu} T^{a} q_{L})(\overline{q}_{L}\gamma^{\mu} T^{a} c_{L}), \ O_{2}^{q} &= (\overline{u}_{L}\gamma_{\mu} q_{L})(\overline{q}_{L}\gamma^{\mu} c_{L}), \ q = d, s, \\ O_{7}^{(\prime)} &= \frac{m_{c}}{e} (\overline{u}_{L(R)} \sigma_{\mu\nu} c_{R(L)}) F^{\mu\nu}, \ O_{9\,(10)}^{(\prime)} &= (\overline{u}_{L(R)}\gamma_{\mu} c_{L(R)})(\overline{\ell} \gamma^{\mu} (\gamma_{5}) \ell), \\ O_{S\,(P)}^{(\prime)} &= (\overline{u}_{L(R)} c_{R(L)})(\overline{\ell} (\gamma_{5}) \ell), \ O_{T\,(T5)} &= \frac{1}{2} (\overline{u} \sigma_{\mu\nu} c)(\overline{\ell} \sigma^{\mu\nu} (\gamma_{5}) \ell). \end{split}$$

Sompute $C_i(\mu_{\text{EW}})$ to avoid large $\alpha_s(\mu_{\text{low}}) \log(\mu_{\text{low}}^2/\mu_{\text{EW}}^2)$.

 $m_{q_{\text{light}}} = 0 + \text{GIM mechanism} \Longrightarrow \Big| C^{\text{SM}}_{7,9,10}(\mu_{\text{EW}}) = 0!$

③ RGEs to go down $\mu_{\text{low}} \approx m_c$ (2-step matching at μ_{EW} and m_b).

- Penguins generated at $\mu = m_b$.
- $O_{7,9}$ mix with $O_{1,2}$, but O_{10} not $\Rightarrow C_{7,9}^{SM}(\mu_c) \neq 0 \& C_{10}^{SM}(\mu_c) = 0$

(O_i(μ_{low})) from non-perturbative techniques (Lattice, LCSR, ...)
 Include resonances: Breit-Wigner distributions + exp. data.

Rare semileptonic charm $c \rightarrow u \, \ell^+ \ell^-$ decays

1909.11108 (D → P ℓℓ)
1805.08516 (D → P₁P₂ ℓℓ)

- Dominated by resonances from $D \to \pi M (\to \ell \ell)$, $C_9^{\text{eff}} \ll C_9^{\text{R}} \to C_9^{\text{SM}} \approx C_9^{\text{R}}$
- Current data still allows for large NP effects at large q².^a

 ${\cal B}_{D^+ o\pi^+\mu^+\mu^-} < {
m 6.7\cdot 10^{-8}},\,90\%\,{
m C.L.}$

- Exp. close to R curves, NP searches in BRs are difficult (NP×R increase δB_{theo})
- No NP \rightarrow QCD tests!

^aLHCb talk of Dominik Mitzel at FPCP 2020.

$D^+ \rightarrow \pi^+ \mu^+ \mu$	0.11.7	1.9 ± 0.1 3.5 ± 3.5	0.48 ± 0.04 1.4 ± 0.8	1.1 ± 0.2 2.3 ± 1.5	3.9 ± 0.2 5.6 ± 3.6	
$D_s^+ ightarrow K^+ \mu^+ \mu^-$	0.030.3	0.40 ± 0.05	0.15 ± 0.07	0.15 ± 0.05	0.8 ± 0.1	
		0.8 ± 0.7	0.3 ± 0.2	 ■0.4 ± 0.3 × 	▶ < 1.2±0.8	996
H. Gisbert (TU Dortmund)		Rare charm decavs a	as probes of New P	hysic	October 6, 2020	4 / 22

Testing lepton universality with $c \rightarrow u \, \ell^+ \ell^-$ decays

• LU can be probed in $c \rightarrow u \ell^+ \ell^-$ (same as B decays)

$$R_{P}^{D} = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B}(D \to P\mu^{+}\mu^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B}(D \to Pe^{+}e^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}$$

- \bullet Same kinematical limits \rightarrow Cancellation of had. uncertainties!
- Well control of SM prediction: |

$$|{m R}^D_{
m P}|_{
m SM}\,pprox\,1$$

• e.g. $D^+ \to \pi^+ \ell^+ \ell^-$ 1909.11108, see 1805.08516 $(D \to P_1 P_2 \ell^+ \ell^-)$ • full q^2 : insensitive to NP.

- low q^2 : poor knowledge of resonances \rightarrow sizable uncertainties.
- high q²: induce significant NP effects.

NP effects at low q^2 are huge. With more exp. data, uncertainties could be reduced studying resonance effects.

	SM	$ C_9 = 0.5$	$ C_{10} = 0.5$	$ C_9 = \pm C_{10} = 0.5$	$ C_{S(P)} = 0.1$	$ C_{T} = 0.5$	$ C_{T5} = 0.5$
full q ²	$1.00 \pm \mathcal{O}(10^{-2})$	SM-like	SM-like	SM-like	SM-like	SM-like	SM-like
low q^2	$0.95\pm\mathcal{O}(10^{-2})$	O(100)	$\mathcal{O}(100)$	$\mathcal{O}(100)$	0.91.4	<i>O</i> (10)	1.05.9
high q ²	$1.00 \pm \mathcal{O}(10^{-2})$	0.211	37	217	1,2 ₇	1	2 <u>−</u> 4 _{√α}

H. Gisbert (TU Dortmund)

Testing lepton flavor violation with $c ightarrow u \, \ell^+ \ell'^- \, (\ell eq \ell')$ decays

- Forbidden in SM! Any signal would cleanly signal LFV!
- Extend LFC EFT via $\overline{\ell} A_{\text{Dirac}} \ell \rightarrow \overline{\ell} A_{\text{Dirac}} \ell'$.
- Experimental bounds:²

$$egin{aligned} \mathcal{B}(D^+ o \pi^+ e^- \mu^+) < 2.2 \cdot 10^{-7}, \, 90\% \, ext{C.L.} \ \mathcal{B}(D^+_s o \mathcal{K}^+ e^- \mu^+) < 9.4 \cdot 10^{-7}, \, 90\% \, ext{C.L.} \end{aligned}$$

CP-asymmetries in rare charm decays

CKM suppressed in the SM! ightarrow Im $(\lambda_b/\lambda_s) \sim 10^{-3}$!

Hadronic decays

$$A_{\rm CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

•
$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

Semileptonic decays

$$A_{\mathsf{CP}}(q^2) = \frac{1}{\Gamma + \overline{\Gamma}} \left(\frac{\mathsf{d}\Gamma}{\mathsf{d}q^2} - \frac{\mathsf{d}\overline{\Gamma}}{\mathsf{d}q^2} \right)$$

• Not measured! 1909.11108

$D_s^+ \rightarrow K^+ \mu^+ \mu^-$

H. Gisbert (TU Dortmund)

Rare charm decays as probes of New Physic

October 6, 2020 7 / 22

ΔA_{CP} predictions in the SM

$$\Delta A_{\rm CP}^{\rm SM} pprox r \sin \phi_{\rm CKM} \sin \delta_{\rm QCD}$$

$r = r_{\rm CKM} r_{\rm QCD}$

- $\sin \phi_{\mathsf{CKM}} \sim \mathsf{Im}(\lambda_b/\lambda_s) \sim 10^{-3}.$
- sin $\delta_{\mathsf{QCD}} \sim \mathcal{O}(1)$, large strong phases.
- $r_{CKM} = \left| \frac{\lambda_d}{\lambda_s} \right| = 1$, ratio of CKM factors.
- What is the ratio of rescattering *r*_{QCD}?

Light Cone Sum Rules (LCSR)

$$extsf{r_{QCD}} \sim \mathcal{O}\left(rac{lpha_{ extsf{s}}}{\pi}
ight) \sim 10^{-1}$$

$$\Delta A_{CP}^{SM} \sim 10^{-4}$$

Low energy QCD

 $r_{
m QCD} \sim 1$

$$\Delta A_{CP}^{SM} \sim 10^{-3}$$

Not explains exp. value Compatible with exp. value SM prediction of ΔA_{CP} is not well established!

ΔA_{CP} from a different perspective

- Theoretical description of hadronic modes is challenging!
- Value of ΔA_{CP}^{SM} depends on who you ask!
- Assuming $\Delta A_{ ext{CP}}^{ ext{SM}} \sim 10^{-4}$,

 $\pmb{\Delta A_{CP}^{NP}} \sim 10^{-3}!$

NP effects should be observed in other observables!

Idea:

Null tests + correlations with other modes! Symmetries "softly" broken

CP-asymmetries and future sensitivities

Plan:

- **Q** Explain ΔA_{CP} with a quite generic BSM extension.
- **②** Patterns from hadronic decays: U-spin and isospin breaking.
- **O Work out experimental projections:**

$ imes 10^{-4}$	Data	$\sigma_{ m LHCb}$ 1808.08865	$\sigma_{Belle~II}$ 1808.10567
$\Delta A_{\rm CP}$	-15.4 ± 2.9 1903.08726	1.3 (0.3)	-
$\Delta A_{\rm CP}^{\rm HFLAV}$	-16.4 ± 2.8 1909.12524	1.3 (0.3)	-
$A_{\rm CP}(D^0 o K^+ K^-)$	-9 ± 11 1909.12524	3(0.7)	3
$A_{ m CP}(D^0 o \pi^+\pi^-)$	-1 ± 14 1909.12524	3 (0.7)	5
$A_{ m CP}(D^0 o \pi^0 \pi^0)$	-3 ± 64 1909.12524	-	9
$A_{ m CP}(D^+ o \pi^+ \pi^0)$	$+290\pm290\pm30_{\rm 0906.3198}$	-	17

 A_{CP} and future sensitivities σ at LHCb Run 1-3 (Run 1-5) and Belle II with 50 ab⁻¹.

A rich phenomenological BSM extension: Z'-models

• Gauge symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'_L$

• Representations:

$$\begin{aligned} &Q_i = (3, 2, 1/6, F_{Q_i}), & u_i = (3, 1, 2/3, F_{u_i}), & d_i = (3, 1, -1/3, F_{d_i}), \\ &L_i = (1, 2, -1/2, F_{L_i}), & e_i = (1, 1, -1, F_{e_i}), & \nu_i = (1, 1, 0, F_{\nu_i}). \end{aligned}$$

• Z' Lagrangian (in the gauge basis):

$$\mathcal{L}_{Z'} = g_4 \sum_i \sum_{\psi_i} F_{\psi_i} \left(\bar{\psi}_i \gamma^{\mu} \psi_i \right) Z'_{\mu}, \quad \psi = Q, L, u, d, e, \nu.$$

- Charge F_{ψ} assignment:
 - Guarantee anomaly-cancellation.
 - Avoid kinetic mixing at one-loop.

model		F_{Q_i}			F_{u_i}			F_{d_i}			F_{L_i}			F_{e_i}			F_{ν_i}	
2	3	3	-6	-8	4	4	-10	10	0	-6	5	1	0	0	0	0	0	0
4	-1	-1	2	-1	2	-1	0	0	0	-1	1	0	-2	2	0	-2	-1	3
5	-1	-1	2	-1	2	-1	2	-1	-1	-1	1	0	-1	1	0	0	0	0
9	0	0	0	-11	-2	13	7	7	-14	-8	3	5	-6	16	-10	0	0	0
10	0	0	0	-13	6	7	-1	-14	15	-15	15	0	-14	18	-4	0	0	0
10μ	0	0	0	-13	6	7	-1	-14	15	-15	0	15	-14	-4	18	0	0	0

From gauge to mass basis via rotations

• Rotations: 4 unitary matrices, $V_{\mu}^{\dagger} V_{\mu} = V_{d}^{\dagger} V_{d} = U_{\mu}^{\dagger} U_{\mu} = U_{d}^{\dagger} U_{d} = I$ $(u'_{I})_{i} = (V_{II})_{ii} (u_{I})_{i}$, $(u'_{R})_{i} = (U_{II})_{ii} (u_{R})_{i}$, $(d'_{L})_{i} = (V_{d})_{ij} (d_{L})_{j}, \qquad (d'_{R})_{i} = (U_{d})_{ij} (d_{R})_{j}. \quad V_{CKM} = V_{ij}^{\dagger} V_{d}$ • Z' Lagrangian for charm FCNCs (in the mass basis): $\mathcal{L}_{Z'} \supset \left(\mathbf{g}_{L}^{\mu c} \, \bar{u}_{L} \gamma^{\mu} c_{L} Z'_{\mu} + \mathbf{g}_{R}^{\mu c} \, \bar{u}_{R} \gamma^{\mu} c_{R} Z'_{\mu} + \text{h.c.} \right)$ $+ g_l^d \bar{d}_L \gamma^\mu d_L Z'_{\mu} + g_R^d \bar{d}_R \gamma^\mu d_R Z'_{\mu}$ + $\mathbf{g}_{I}^{s} \bar{s}_{L} \gamma^{\mu} s_{L} Z'_{\mu}$ + $\mathbf{g}_{R}^{s} \bar{s}_{R} \gamma^{\mu} s_{R} Z'_{\mu}$ + $\sum \left(\mathbf{g}_{L}^{\ell \ell} \bar{\ell}_{L} \gamma^{\mu} \ell_{L} + \mathbf{g}_{R}^{\ell \ell} \bar{\ell}_{R} \gamma^{\mu} \ell_{R} \right) \mathbf{Z}_{\mu}^{\prime}$ $\ell = e.u.\tau$ $g_{I}^{d,s} = g_4 F_{Q_{1,2}}, \quad g_{R}^{d,s} = g_4 F_{d_{1,2}}, \quad g_{I}^{\ell\ell} = g_4 F_{L_{\ell}}, \quad g_{R}^{\ell\ell} = g_4 F_{e_{\ell}}$ • Avoid strong constraints in the kaon sector $\rightarrow | V_d = U_d = I$ $\begin{vmatrix} \mathbf{g}_{I}^{uc} = \mathbf{g}_{4} \, \Delta F_{L} \, \lambda \end{vmatrix} \quad \begin{vmatrix} \mathbf{g}_{R}^{uc} = \mathbf{g}_{4} \, \Delta F_{R} \, \sin \theta_{u} \, \cos \theta_{u} \, \mathrm{e}^{\mathrm{i} \, \phi_{R}} \end{vmatrix}$ with $\Delta F_L = F_{Q_2} - F_{Q_1}$ and $\Delta F_R = F_{u_2} - F_{u_1}$.

12 / 22

Z'-effects for ΔA_{CP}

$$\boldsymbol{\Delta A_{\mathrm{CP}}^{\mathrm{NP}}} = \boldsymbol{A_{\mathrm{CP}}^{\mathrm{NP}}}\left(\boldsymbol{K^{+}K^{-}}\right) - \boldsymbol{A_{\mathrm{CP}}^{\mathrm{NP}}}\left(\pi^{+}\pi^{-}\right)$$

with (assuming maximal strong phases sin $\delta_{\pi, {\cal K}} \sim 1$)

$$\boldsymbol{A}_{\mathsf{CP}}^{\mathsf{NP}}\left(\boldsymbol{K}^{+}\boldsymbol{K}^{-}\right)\sim\left(\frac{\boldsymbol{g}_{4}}{\boldsymbol{M}_{Z'}}\right)^{2}\sin\phi_{R}\,\Delta\widetilde{\boldsymbol{F}}_{R}\left[\boldsymbol{c}_{\mathcal{K}}\,\boldsymbol{F}_{Q_{2}}+\boldsymbol{d}_{\mathcal{K}}\,\boldsymbol{F}_{d_{2}}\right]$$

$$\boldsymbol{A}_{\mathsf{CP}}^{\mathsf{NP}}\left(\pi^{+}\pi^{-}\right) \sim \left(\frac{\boldsymbol{g}_{\mathsf{4}}}{\boldsymbol{M}_{\boldsymbol{Z}'}}\right)^{2} \sin \phi_{R} \, \boldsymbol{\Delta} \widetilde{\boldsymbol{F}}_{R}\left[\boldsymbol{c}_{\pi} \, \boldsymbol{F}_{\boldsymbol{Q}_{1}} + \boldsymbol{d}_{\pi} \, \boldsymbol{F}_{\boldsymbol{d}_{1}}\right]$$

with $\Delta \widetilde{F}_R = \sin \theta_u \cos \theta_u \Delta F_R$ and

$$c_{\kappa} = \frac{\chi_{\kappa}}{a_{\kappa}} r_1 \sim + \mathcal{O}(1) , \quad c_{\pi} = -\frac{\chi_{\pi}}{a_{\pi}} r_1 \sim - \mathcal{O}(1) ,$$

$$d_{\kappa} = \frac{1}{a_{\kappa}} r_2 \sim - \mathcal{O}(0.1) , \quad d_{\pi} = -\frac{1}{a_{\pi}} r_2 \sim + \mathcal{O}(0.1) .$$

 a_P is tree-level amplitude fixed by $\mathcal{B}(D^0 \to P^+P^-)_{exp}$ and $r_{1,2}$ encode RGE effects.

$D^0 - \overline{D}^0$ mixing constraints

- Amplitude: $\langle D^0 | \mathcal{H}_{eff}^{\Delta c=2} | \overline{D}^0 \rangle = M_{12} \frac{i}{2} \Gamma_{12}$
- 3 physical quantities: $x_{12} = 2 \frac{|M_{12}|}{\Gamma}$, $y_{12} = \frac{|\Gamma_{12}|}{\Gamma}$, $\phi_{12} = \arg\left(\frac{M_{12}}{\Gamma_{12}}\right)$.
- Require NP contributions to saturate the current world averages (HFLAV):

$$x_{12}^{\sf NP} \le x_{12} \;, \;\; x_{12}^{\sf NP} \sin \phi_{12}^{\sf NP} \le x_{12} \sin \phi_{12}$$

• Constraint from x₁₂:

$$\left|(g^{\scriptscriptstyle uc}_{\scriptscriptstyle L})^2+(g^{\scriptscriptstyle uc}_{\scriptscriptstyle R})^2-{\sf X}\,g^{\scriptscriptstyle uc}_{\scriptscriptstyle L}\,g^{\scriptscriptstyle uc}_{\scriptscriptstyle R}
ight|\lesssim 6\cdot 10^{-7}\left(rac{{\sf M}_{Z'}}{{
m TeV}}
ight)$$

- Avoided via aligment: $g_L^{uc} \sim X g_R^{uc}$
- Implies: $\operatorname{Arg}(g_L^{uc}) \sim \operatorname{Arg}(g_R^{uc})$
- BUT kaon constraints kill Arg(g_L^{uc})!
- $g_L^{uc} = 0 \rightarrow \Delta F_L = 0 \rightarrow F_{Q_1} = F_{Q_2}!$ *: Model 2 with $\Delta A_{CP}^{NP} \sim 10^{-3}$

$$\Delta F_R = 12, \; \phi_R \sim \pi/2 \,, \; g_4/M_{Z'} \sim 0.38/{
m TeV} \,, \; heta_u \sim 1 \cdot 10^{-4} \;.$$

Same couplings as rare $|\Delta c| = |\Delta u| = 1$ decays! Ū π -12 $\frac{3\pi}{4}$ $|\Delta A_{\rm CP}^{\rm NP}|$ $\frac{\pi}{2}$ b_R $\frac{\pi}{4}$ -4 0.20.60.8 1.0 1.2 0 0.4 $q_{\rm A}/M_{Z'} ({\rm TeV}^{-1})$

U-spin patterns in $D^0 ightarrow \pi^+\pi^-, \ K^+K^-$

- U-spin symmetry: invariant under $d \iff s$.
- Obviously is broken (by M_P and f_P , $\pi^+ = u \bar{d}$ and $K^+ = u \bar{s}$).
- Z' model: U-spin breaking arises for $F_{Q_1} \neq F_{Q_2}$ or $F_{d_1} \neq F_{d_2}$!
- U-spin sum rule (broken $\delta U_{\text{break}} \lesssim 30\%$ 1308.4143):

Green and gray bands are the 1σ experimental world averages (HFLAV).

Future experimental projections over model $10(\mu)$. Ligher (darker) bands correspond to LHCb Run 1-3 (1-5).

Isospin breaking patterns in $D^+ ightarrow \pi^+ \pi^0$

- Isospin symmetry: invariant under $u \iff d$.
- Softly broken (10% by $m_u \neq m_d$ and QED corrections).
- Z' model: Isospin breaking arises for $F_{u_1} \neq F_{d_1}$!

$$m{A}_{ ext{CP}}^{ ext{NP}}(\pi^+\pi^0) \sim rac{g_4^2}{M_{Z'}^2} \, \Delta \widetilde{m{F}}_R \, m{d}_{\pi'} \, (m{F}_{d_1} - m{F}_{u_1})$$

Models 9 and $10(\mu)$:

$$m{A}_{ ext{CP}}^{ ext{NP}}(\pi^+\pi^0) \sim (1-2) \cdot m{\Delta} m{A}_{ ext{CP}}^{ ext{NP}}$$

for $\Delta A_{\rm CP}^{\rm NP}\sim 10^{-3}$ is within the projected sensitivity of Belle II, $\sigma(A_{\rm CP}(\pi^+\pi^0))_{\rm Belle~II}=1.7\cdot 10^{-3}~{\rm for}~50{\rm ab}^{-1}~.$

16 / 22

Further opportunities: Semileptonic decays vs ΔA_{CP}

Rare charm dineutrino modes $c ightarrow u \, u ar{ u}$

• $c \rightarrow u \, \nu \bar{\nu}$ are GIM-suppressed in the SM:³

Any observation would cleanly signal NP!

• Well-suited for e⁺e⁻-colliders such as Belle II and future FCC-ee.

• What is the new physics reach?

- \star Fragmentation fractions $f(c
 ightarrow h_c)$, 1509.01061
- * Number of $c\bar{c}$: Abada:2019lih
 - $N(c\bar{c})_{\text{Belle II}} = 65 \cdot 10^9 \text{ for } 50 \text{ ab}^{-1}.$
 - $N(c\bar{c})_{\text{FCC-ee}} = 550 \cdot 10^9$.
- * $N(h_c) = 2 f(c \rightarrow h_c) N(c\bar{c}).$

3	hep-ph/0112235,	0908.1174
---	-----------------	-----------

h _c	$f(c \rightarrow h_c)$	$N(h_c)_{\rm FCC-ee}$	$N(h_c)_{\text{Belle II}}$
D^0	0.59	$6 \cdot 10^{11}$	$8 \cdot 10^{10}$
D^+	0.24	$3 \cdot 10^{11}$	$3 \cdot 10^{10}$
D_s^+	0.10	$1 \cdot 10^{11}$	$1\cdot 10^{10}$
Λ_c^{+}	0.06	$7\cdot 10^{10}$	$8\cdot 10^9$

$$N(h_c) \sim 10^{11}!$$

1L

Link neutrinos to charged leptons modes via $SU(2)_L$

$$\mathcal{B} \propto \sum_{\nu=i,j} \left(|\mathcal{C}_{L}^{\boldsymbol{U}\boldsymbol{i}j}|^{2} + |\mathcal{C}_{R}^{\boldsymbol{U}\boldsymbol{j}}|^{2} \right) = \operatorname{Tr} \left[\mathcal{C}_{L}^{\boldsymbol{U}} \, \mathcal{C}_{L}^{\boldsymbol{U}\dagger} + \mathcal{C}_{R}^{\boldsymbol{U}} \, \mathcal{C}_{R}^{\boldsymbol{U}\dagger} \right]$$
$$= \operatorname{Tr} \left[\mathcal{K}_{L}^{\boldsymbol{D}} \mathcal{K}_{L}^{\boldsymbol{D}\dagger} + \mathcal{K}_{R}^{\boldsymbol{U}} \mathcal{K}_{R}^{\boldsymbol{U}\dagger} \right] + \mathcal{O}(\lambda) = \sum_{\ell=i,j} \left(|\mathcal{K}_{L}^{\boldsymbol{D}\boldsymbol{i}j}|^{2} + |\mathcal{K}_{R}^{\boldsymbol{U}\boldsymbol{i}j}|^{2} \right) + \mathcal{O}(\lambda)$$

SU(2) relates up, down, neutrinos and charged leptons.

3 Mass basis: $C_L^U = W^{\dagger} K_L^D W + O(\lambda), \quad C_R^U = W^{\dagger} K_R^U W$

• Unitarity $WW^{\dagger} = W^{\dagger}W = I$

$$c \to u \,\ell \ell \longrightarrow c \to u \,\nu \bar{\nu} \longleftrightarrow d \to s \,\ell \ell$$

* Independent of PMNS matrix and subleading $\mathcal{O}(\lambda)$ corrections! * Prediction of dineutrino rates for different leptonic flavor structures $\mathcal{K}_{L,R}^{ij}$ can be probed with lepton-specific measurements! Possible leptonic flavor structures for $\mathcal{K}_{L,R}^{ij}$

i) Lepton-universality (LU).

$$\left(\begin{array}{ccc} {\bf k} & {\bf 0} & {\bf 0} \\ {\bf 0} & {\bf k} & {\bf 0} \\ {\bf 0} & {\bf 0} & {\bf k} \end{array}\right)$$

ii) Charged lepton flavor conservation (cLFC).

$$\left(egin{array}{cccc} k_{11} & 0 & 0 \ 0 & k_{22} & 0 \ 0 & 0 & k_{33} \end{array}
ight)$$

iii) $\mathcal{K}_{L,R}^{ij}$ arbitrary.

$$\left(\begin{array}{cccc} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{array} \right)$$

Rare charm decays as probes of New Physic

Upper limits on dineutrino modes can probe lepton unversality!

• Bounds on lepton specific WCs for $\ell, \ell' = e, \mu, \tau.^4$

	$ \mathcal{K}_A^{P\ell\ell'} $	ee	$\mu\mu$	au au	$e\mu$	e au	μau
s ightarrow d	$ \mathcal{K}_L^{D\ell\ell'} $	3.5	1.9	6.7	2.0	6.1	6.6
c ightarrow u	$ \mathcal{K}_{R}^{U\ell\ell'} $	2.9	1.6	5.6	1.6	4.7	5.1

•
$$\mathcal{B} \propto x = \sum_{\ell,\ell'} \left(\left| \mathcal{K}_L^{D\ell\ell'} \right|^2 + \left| \mathcal{K}_R^{U\ell\ell'} \right|^2 \right) + \mathcal{O}(\lambda) = \sum_{\ell,\ell'} R^{\ell\ell'} + \mathcal{O}(\lambda)$$

 $x = 3 R^{\mu\mu} \lesssim 34$, (Lepton Universality)

 $x = R^{ee} + R^{\mu\mu} + R^{\tau\tau} \lesssim 196$, (charged Lepton Flavor Conservation)

 $x = \mathbf{R}^{ee} + \mathbf{R}^{\mu\mu} + \mathbf{R}^{\tau\tau} + 2(\mathbf{R}^{e\mu} + \mathbf{R}^{e\tau} + \mathbf{R}^{\mu\tau}) \lesssim 716.$

LU is fixed by the most stringent bound (muons).

Dineutrino branching ratios upper limits

$$\mathcal{B}(h_c \to F \, \nu \bar{\nu}) = A^{h_c F}_+ \, x_+ + A^{h_c F}_- \, x_-, \quad x_\pm = \sum_{i,j} |\mathcal{C}^{Uij}_L \pm \mathcal{C}^{Uij}_R|^2 < 2 \, x \; .$$

 $N_i = \eta_{\text{eff}} \mathcal{B}_i N(h_c), \ N(c\bar{c})_{\text{Belle II}} = 65 \cdot 10^9 \text{ for } 50 \text{ ab}^{-1}, \ N(c\bar{c})_{\text{FCC-ee}} = 550 \cdot 10^9.$

$h_c \rightarrow F$	$\mathcal{B}_{I,U}^{max}$	\mathcal{B}_{cLEC}^{max}	\mathcal{B}^{max}	$N_{\rm LU}^{\rm max}/\eta_{\rm eff}$	$N_{\rm cl~FC}^{\rm max}/\eta_{\rm eff}$	$N^{\rm max}/\eta_{\rm eff}$
	$[10^{-7}]$	$[10^{-6}]$	$[10^{-6}]$			
$D^0 ightarrow \pi^0$	6.1	3.5	13	47 k (395 k)	270 k (2.3 M)	980 k (8.3 M)
$D^+ ightarrow \pi^+$	25	14	52	77 k (650 k)	440 k (3.7 M)	1.6 M (14 M)
$D^+_s ightarrow K^+$	4.6	2.6	9.6	6 k (50 k)	34 k (290 k)	120 k (1.1 M)
$D^0 ightarrow \pi^0 \pi^0$	1.5	0.8	3.1	11 k (95 k)	64 k (540 k)	230 k (2.0 M)
$D^0 ightarrow \pi^+\pi^-$	2.8	1.6	5.9	22 k (180 k)	120 k (1.0 M)	450 k (3.8 M)
$D^0 ightarrow K^+ K^-$	0.03	0.02	0.06	0.2 k (1.9 k)	1.3 k (11 k)	4.8 k (40 k)
$\Lambda_c^+ ightarrow p^+$	18	11	39	14 k (120 k)	82 k (700 k)	300 k (2.6 M)
$\Xi_c^+ \rightarrow \Sigma^+$	36	21	76	28 k (240 k)	160 k (1.4 M)	590 k (5.0 M)
$D^0 o X$	12	6.8	25	91 k (770 k)	520 k (4.4 M)	1.9 M (16 M)
$D^+ o X$	30	17	63	94 k (800 k)	540 k (4.6 M)	2.0 M (17 M)
$D_s^+ \to X$	13	7.3	27	17 k (140 k)	95 k (810 k)	350 k (2.9 M)

日本《聞》《臣》《臣》

Final remarks

- * Charm physics provide a unique window to explore FCNCs in the up-sector.
- * Null tests put charm physics at the same level as NP tests in other sectors.
- ***** Plenty of opportunities to probe NP:
 - LFV and LU with charm decays.
 - Patterns in hadronic decays:
 - Softly broken symmetries.
 - Correlations with other modes.
 - New ideas presented: probes with $\mathcal{B}(c
 ightarrow u
 u ar{
 u})$.
- ***** Take-home message:

Unique phenomenology, formidable (and complementary) place to search for BSM physics!

Thank you for your attention!

BACKUP

October 6, 2020 22 / 22

(日)

æ

$|\Delta c| = |\Delta u| = 1$ FCNC couplings $g_{L,R}^{uc}$

• Avoid strong constraints in the kaon sector $\rightarrow |V_d = U_d = I$

$$V_{CKM} = V_u^{\dagger} \to (V_{CKM})_{2 \times 2} = \begin{pmatrix} \cos \Phi_u & \sin \Phi_u \\ -\sin \Phi_u & \cos \Phi_u \end{pmatrix}, \ \sin \Phi_u = \lambda \approx 0.2 .$$
$$(U_u)_{2 \times 2} = \begin{pmatrix} \cos \theta_u & \sin \theta_u e^{-i\phi_R} \\ -\sin \theta_u e^{i\phi_R} & \cos \theta_u \end{pmatrix} \to 1 \text{ CP-phase in RH up sector}$$

• After rotation:

$$g_{L}^{uc} = g_{4} (V_{CKM} F_{Q} V_{CKM}^{\dagger})_{12} = g_{4} (F_{Q_{2}} - F_{Q_{1}}) \sin \Phi_{u} \cos \Phi_{u} ,$$

$$g_{R}^{uc} = g_{4} (U_{u}^{\dagger} F_{u} U_{u})_{12} = g_{4} (F_{u_{2}} - F_{u_{1}}) \sin \theta_{u} \cos \theta_{u} e^{i \phi_{R}} ,$$

• CP violation BSM generated by RH up rotation in g_R^{uc} ,

 $g_L^{uc} = g_4 \,\Delta F_L \,\lambda \qquad g_R^{uc} = g_4 \,\Delta F_R \,\sin\theta_u \,\cos\theta_u \,\mathrm{e}^{\mathrm{i}\,\phi_R}$

with $\Delta F_L = F_{Q_2} - F_{Q_1}$ and $\Delta F_R = F_{u_2} - F_{u_1}$

Beyond the usual four-fermion operators

New U(1)' charges require new operators, like EW penguins.

High-energy scales

8 additional operators:

$$\begin{split} \widetilde{Q}_{7} &= (\bar{u}c)_{V-A} \sum_{q} F_{u_{i},d_{i}} (\bar{q}q)_{V+A} , \qquad \widetilde{Q}_{7}' = (\bar{u}c)_{V+A} \sum_{q} F_{Q_{i}} (\bar{q}q)_{V-A} , \\ \widetilde{Q}_{8} &= (\bar{u}_{\alpha}c_{\beta})_{V-A} \sum_{q} F_{u_{i},d_{i}} (\bar{q}_{\beta}q_{\alpha})_{V+A} , \qquad \widetilde{Q}_{8}' = (\bar{u}_{\alpha}c_{\beta})_{V+A} \sum_{q} F_{Q_{i}} (\bar{q}_{\beta}q_{\alpha})_{V-A} , \\ \widetilde{Q}_{9} &= (\bar{u}c)_{V-A} \sum_{q} F_{Q_{i}} (\bar{q}q)_{V-A} , \qquad \widetilde{Q}_{9}' = (\bar{u}c)_{V+A} \sum_{q} F_{u_{i},d_{i}} (\bar{q}q)_{V+A} , \\ \widetilde{Q}_{10} &= (\bar{u}_{\alpha}c_{\beta})_{V-A} \sum_{q} F_{Q_{i}} (\bar{q}_{\beta}q_{\alpha})_{V-A} , \qquad \widetilde{Q}_{10}' = (\bar{u}_{\alpha}c_{\beta})_{V+A} \sum_{q} F_{u_{i},d_{i}} (\bar{q}_{\beta}q_{\alpha})_{V+A} , \end{split}$$

with q = u, c, d, s, b and α, β are color indices.

Matching and RGEs

Matching condition at high-energy scales:

$$\widetilde{C}_{7,9}(M_{Z'}) = \frac{\sqrt{2}}{G_F} \frac{g_4 g_L^{uc}}{4 M_{Z'}^2}, \quad \widetilde{C}_{7,9}'(M_{Z'}) = \frac{\sqrt{2}}{G_F} \frac{g_4 g_R^{uc}}{4 M_{Z'}^2}, \quad \widetilde{C}_{8,10}^{(\prime)}(M_{Z'}) = 0.$$

QCD plays a role at low-energy: RGEs mix different operators

$$\left(\frac{\lambda^{a}}{2}\right)_{\alpha\beta} \left(\frac{\lambda^{a}}{2}\right)_{\gamma\delta} = \delta_{\alpha\delta} \,\delta_{\beta\gamma} - \frac{1}{N_{c}} \,\delta_{\alpha\beta} \,\delta_{\gamma\delta}$$

Anomalous dimension

 $\gamma_{F}^{0} \Rightarrow$

$$\begin{split} \widetilde{C}_{7}^{(\prime)}(m_{c}) &= & 0.829 \, \widetilde{C}_{7}^{(\prime)}(M_{Z'}) \;, \\ \widetilde{C}_{8}^{(\prime)}(m_{c}) &= & 1.224 \, \widetilde{C}_{7}^{(\prime)}(M_{Z'}) \;, \\ \widetilde{C}_{9}^{(\prime)}(m_{c}) &= & 1.404 \, \widetilde{C}_{9}^{(\prime)}(M_{Z'}) \;, \\ \widetilde{C}_{10}^{(\prime)}(m_{c}) &= & -0.718 \, \widetilde{C}_{9}^{(\prime)}(M_{Z'}) \;. \end{split}$$

Estimation of hadronic matrix elements (HME)

Factorization of currents: $Q_i = (\bar{q}_1 \Gamma_1 q_2) (\bar{q}_3 \Gamma_2 q_4)$

$$\left\langle \boldsymbol{P}^{+} \, \boldsymbol{P}^{-} \right| \boldsymbol{Q}_{i} \left| \boldsymbol{D}^{0} \right\rangle = \left\langle \boldsymbol{P}^{+} \right| \left(\bar{\boldsymbol{q}}_{1} \, \boldsymbol{\Gamma}_{1} \, \boldsymbol{q}_{2} \right) \left| \boldsymbol{0} \right\rangle \left\langle \boldsymbol{P}^{-} \right| \left(\bar{\boldsymbol{q}}_{3} \, \boldsymbol{\Gamma}_{2} \, \boldsymbol{q}_{4} \right) \left| \boldsymbol{D}^{0} \right\rangle \boldsymbol{B}_{i}^{\boldsymbol{P}^{+}\boldsymbol{P}^{-}}$$

where $B_i^{P^+P^-}$ parametrizes the deviation of the true HME from $B_i^{P^+P^-}|_{naïve} = 1$.

After Fierz identities in the flavor and color space:

$$\left\langle \left\langle P^{+}P^{-}\right| Q_{i}\left| D^{0}\right\rangle _{\text{Penguin}}=\left(\text{factor}\right) \times\left(\text{HME}_{\text{Tree}}\right)$$

then it cancels in the CP-asymmetry: $\textbf{A}_{CP} \propto \frac{\text{HME}_{\text{Penguin}}}{\text{HME}_{\text{Tree}}}$

What does the "factor" contain?

- <u>Chiral factor</u> (Hadronization):
 - Non-enhanced: $Q_{9,10}$
 - Enhanced: Q_{7,8}
- Color factor (Fierz):
 - Non-suppressed: $\widetilde{Q}_{8,10}$
 - Suppressed: $\widetilde{Q}_{7,9}$

 $\left\langle \mathbf{P^{+}P^{-}} \left| \left. \mathbf{Q}_{i}^{(V-A) imes (V+A)} \left| \mathbf{D}^{0}
ight
angle \propto rac{2 \, M_{P}^{2}}{m_{c} \left(m_{q_{1}}+m_{q_{2}}
ight)}
ight
angle$

$$\left(\tfrac{\lambda^a}{2}\right)_{\alpha\beta}\ \left(\tfrac{\lambda^a}{2}\right)_{\gamma\delta}=\ \delta_{\alpha\delta}\ \delta_{\beta\gamma}\ -\ \tfrac{1}{N_{\mathcal{C}}}\ \delta_{\alpha\beta}\ \delta_{\gamma\delta}$$

$\delta \mathcal{B}$ vs \mathcal{B} : exp. projections and theo. predictions

э

< ロ > < 同 > < 回 > < 回 > < 回 >