Exotic hadron spectroscopy at LHCb

Adam Morris

HISKP, University of Bonn

Annual meeting of German LHCb groups Bonn, 6th Oct 2020

Introduction to exotic hadron spectroscopy

Exotic hadron spectroscopy at LHCb Adam Morris (Bonn) LHCb-DE 2020

- Exotic hadrons predicted since proposal of quark model [PL 8 (1964) 214-215]
 - Tetraquarks (qqqqq)
 - Pentaquarks (*qqqqq*)
 - Glueballs, hybrids....
- Decades-long hunt for such states
- Several charmonium tetraquark candidates since 2003 [PRL 91 262001 etc...]
- Bottomonium tetraquark candidates seen by Belle in 2012 [PRL 108 122001]
- Charmonium pentaquark candidates seen by LHCb in 2015/2019 [PRL 115 072001, PRL 112 222001]
- This year: four-charm and open charm tetraquark candates seen by LHCb

 $c\overline{c}u\overline{u}$ Study of the $\chi_{c1}(3872)$ lineshape

 $c\overline{c}c\overline{c}$ Structure in J/ψ -pair mass spectrum

csdu Observation of exotic structure in $B^+ \rightarrow D^+ D^- K^+$

cc̄uud Search for $P_c(4312)^+ \rightarrow \eta_c(1S)p$

- First well-established exotic hadron candidate
- Observed by Belle in 2003 as a narrow peak in $m_{J/\psi\pi\pi}$ from $B^+ \rightarrow K^+ J/\psi\pi^+\pi^-$ decays [PRL 91, 262001 (2003)]
- Confirmed by many other experiments
- Breit-Wigner mass right on $D^{*0}\overline{D}^{0}$ threshold: $m_{\chi_{c1}} - m_{\overline{D}^{0}} - m_{D^{*0}} = 0.01 \pm 0.18$ MeV
- Narrow width $\Gamma <$ 1.2 MeV/ c^2
- $J^{PC} = 1^{++}$ measured by LHCb [PRL 110, 222001 (2013), PRD 92, 011102 (2015)]
- No unambiguous interpretation yet: compact tetraquark, mesonic molecule, admixture...

[arXiv:2005.13419, accepted by PRD]

- Simultaneous fit to 6 data samples (2 years and 3 di-pion momentum bins)
- Signal: lineshape convoluted with resolution
- Either Breit-Wigner (BW) or a Flatté-inspired model to account for the $\overline{D}^0 D^{*0}$ threshold
 - Indistinguishable after resolution ($\sigma < 100 \text{ keV}$) $m_{\chi_{c1}(3872)}^{BW} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \text{ MeV}$ $\Gamma_{\chi_{c1}(3872)}^{BW} = 1.39 \pm 0.24 \pm 0.10 \text{ MeV}$
- Non-zero BW width

Study of the $\chi_{c1}(3872)$ lineshape

(Bonn-LHCb analysis)

Since

- 1 $\chi_{c1}(3872) \rightarrow D^{*0}\overline{D}^0$ observed
- **2** $D^{*0}\overline{D}^{0}$ threshold is within the natural width of the $\chi_{c1}(3872)$ lineshape
- \Rightarrow Breit–Wigner description not usable: use Flatté to account for opening of $D^{*0}\overline{D}^{0}$ channel
- No longer straightforward to read off mass and width. Instead look for poles
 - Two poles found (as expected)
- Pole positions shed light on how to interpret the state
 - Bound state preferred with binding energy < 100 keV
 - Virtual assignment not excluded

- Predictions for the masses of a 4-charm state: 5.8-7.4 GeV
- Clean experimental environment for J/ψ -pair analysis
- J/ψ pairs from double-parton scattering (DPS) or single-parton scattering (SPS)

• Visible structure in the di-J/ ψ mass spectrum

[arXiv:2006.16597, accepted by Science Bulletin]

- Threshold enhancement
- Dip below 6.9 GeV
- Narrow peak at 6.9 GeV
- Hint of something at 7.15 GeV

Background-subtracted data not well described by DPS + NR SPS

[arXiv:2006.16597, accepted by Science Bulletin]

Structure not well decribed by single resonance. Many models tried, here are two:

No interference

- Three non-interfering BW peaks
- $m_{X(6900)} = 6905 \pm 11 \pm 7 \text{ MeV}$
- $\Gamma_{X(6900)} = 80 \pm 19 \pm 33$ MeV

SPS-BW interference

- Two BW peaks: one interferes with NR SPS
- $m_{X(6900)} = 6886 \pm 11 \pm 11$ MeV
- $\Gamma_{X(6900)} = 168 \pm 33 \pm 69 \text{ MeV}$

If confirmed \implies first observation of an exotic hadron entirely composed of heavy quarks.

• $\chi_c - \chi_c$ thresholds may play a role

Model-independent study of $B^+ \rightarrow D^+ D^- K^+$

[arXiv:2009.00025]

- ✓ D^+D^- resonance ⇒ $c\bar{c}$
- ! D^-K^+ resonance $\Rightarrow \overline{csud}$
- **✗** D^+K^+ resonance ⇒ doubly charged

Check $c\bar{c}$ -only hypothesis using Legendre expansion in $\cos\theta_{DD}$ up to order 4 (allowing $L \leq 2$)

$$\frac{dN^{k}}{d(\cos\theta_{DD})} = \sum_{l=0}^{l_{max}} a_{l}^{k} P_{l}(\cos\theta_{DD}), \text{ where } a_{l}^{k} = \frac{2}{N_{MC}^{k}} \sum_{i=1}^{N_{data}^{k}} P_{l}(\cos\theta_{DD}).$$

- Data not well described by Legendre moments from resonances up to J = 2
- Higher-spin resonances are suppressed
- The D^+K^+ spectrum does not present any unexplained structure
- The hypothesis of only D^+D^- resonances up to spin 2 are present is rejected with a significance of 3.9σ
- Amplitude analysis is necessary for a more detailed study

Exotic hadron spectroscopy at LHCb Adam Morris (Bonn) LHCb-DE 2020

- All well-motivated DD resonances are included
 - $\chi_{c0}(3930)$ and $\chi_{c2}(3930)$ are seen
- Data not well described by considering only DD resonances

LHC

[arXiv:2009.00026]

Spin-0 and spin-1 with roughly the same mass

• Two D^-K^+ Breit-Wigners added to improve significantly the fit

[arXiv:2009.00026]

- No evidence for the $\chi_{c0}(3860) \rightarrow D^+D^-$ state reported by Belle
- The $\chi_{c2}(3930)$ contribution is better described by two states
- $m_{\chi_{c0}(3930)} = 3923.8 \pm 1.5 \pm 0.4$ MeV, $\Gamma_{\chi_{c0}(3930)} = 17.4 \pm 5.1 \pm 0.8$ MeV
- $m_{\chi_{c2}(3930)} = 3926.8 \pm 2.4 \pm 0.8$ MeV, $\Gamma_{\chi_{c2}(3930)} = 34.2 \pm 6.6 \pm 1.1$ MeV
- Reasonable agreement with data when including 2 D^-K^+ Breit-Wigners
- $m_{X_0(2900)} = 2886 \pm 7 \pm 2$ MeV, $\Gamma_{X_0(2900)} = 57 \pm 12 \pm 4$ MeV
- $m_{X_1(2900)} = 2904 \pm 5 \pm 1$ MeV, $\Gamma_{X_1(2900)} = 110 \pm 11 \pm 4$ MeV
- However, other models (i.e. rescattering) may also explain the discrepancy

If interpreted as resonances \implies first clear observation of exotic hadrons with open flavour, and without a heavy quark-antiquark pair

Minimal quark content: $[csd\bar{u}]$

Each quark has a different flavour!

Where do pentaquarks get their width?

- Charmonium-pentaquarks (P_c) states seen by LHCb in 2015 and 2019 [PRL 115 072001, PRL 112 222001]
- Photoproduction experiments put upper limit on partial width $\Gamma(P_c \rightarrow J/\psi p) < 2 \sim 5\%$ [PRL 123 7, 072001]

- Expect to see *P_c* in other channels with larger branching fractions
 - If molecules, should couple strongly to channels with open charm, *e.g.* $\Lambda_c^+ \overline{D}^0, \Sigma_c^+ \overline{D}^0, \Lambda_c^+ \overline{D}^{*0}$
- Focus of analysis topics in the Bonn LHCb group

- $P_c(4312)^+ \rightarrow J/\psi p$ observed in $\Lambda_b^0 \rightarrow J/\psi p K^-$
- Mass slighly below $\Sigma_c^+ \overline{D}^0$ threshold, expected for a molecular state
- If a $\Sigma_c^+ \overline{D}{}^0$ molecule, branching fraction to $\eta_c(1S)p$ should be ~ 3× than to $J/\psi p$

- Dataset: 5.5 fb⁻¹ collected at $\sqrt{s} = 13$ TeV
- Both $\eta_{\rm C}$ and J/ψ (normalisation) reconstructed as pp
- No evidence of pentaquark contributions, limit set at 90% CL (mystery deepens...)

•
$$\mathscr{R}_{\eta_c p} = \frac{\mathscr{B}(\Lambda_b^0 \to P_c(4312)^+ K^-) \times \mathscr{B}(P_c(4312)^+ \to \eta_c(1S)p)}{\mathscr{B}(\Lambda_b^0 \to \eta_c p K^-)} < 24\%$$

First observation of the decay $\Lambda_b^0 \rightarrow \eta_c p K^-$ with significance of 7.7 σ $\mathscr{B}(\Lambda_b^0 \rightarrow \eta_c p K^-) = (1.06 \pm 0.16 \pm 0.06^{+0.22}_{-0.19}(\mathscr{B})) \times 10^{-4}$

- Explosion of exotic hadron candidates in the last decades shows no sign of slowing down
- LHCb has established itself as a major contributor
- Precision studies of the $\chi_{c1}(3872)$ bring us closer to understanding its nature
- New exotic quark contents ($cc\overline{cc}$, $cs\overline{ud}$) found this year
- Run 3 of LHC will see a much larger dataset for LHCb to explore

Thanks for listening