The BGOOD experiment at ELSA

- parallels between multi-quark states in c & s quark sectors ?

Hartmut Schmieden Physikalisches Institut Universität Bonn

Outline

- BG00D experiment
- why? physics case
- what? (preliminary) results
- · summary

supported by DFG PN 50165297 and PN 405882627

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

universität**bonn**

LHCb-Deutschland – Bonn, Oct 2020

BG00D experiment

located at electron accelerator Physikalisches Institut University of Bonn

BG00D experiment

located at electron accelerator Physikalisches Institut University of Bonn

BGOOD experiment

spokespersons: P. Levi Sandri (Frascati) & H.S. (Bonn)

- combination of BGO central calorimeter & forward spectrometer
- high momentum resolution, excellent neutral & charged particle id

BGOOD experiment

spokespersons: P. Levi Sandri (Frascati) & H.S. (Bonn)

- combination of BGO central calorimeter & forward spectrometer
- high momentum resolution, excellent neutral & charged particle id

BGO-OD experiment at ELSA

GIM

e⁻-Beamdump

The European Physical Journal

Recognized by European Physical Society

volume 56 · number 4 · april · 2020

Hadrons and Nuclei

Overview of the BGOOD (BGOball Open Diplole magnet) experiment at the Elsa Facility dedicated to study meson photo-production

Silicon Tracker

From: T. C. Jude and P. Levi Sandri et al. on "The BGOOD experimental setup at ELSA"

4

Excited states: quark model

N* resonances

Status N* spectroscopy

- missing resonances ?
- relevant degrees of freedom ?

- 3 const. quarks unlikely
- quark diquark ??
- meson d.o.f. ?

e.g.

L.Ya. Glozman and D.O. Riska, Phys. Rep. 268 (1996) 263

C. Garcia-Recio et al., PLB 582 (2004) 49

M. Lutz, E. Kolomeitsev, PLB 585 (2004) 243

	PDG s	PDG status in		
state JP	2010	2020(N γ)		
N(1860) 5/2	'+ *	*		
N(1875) 3/2)	**		
N(1880) 1/2	+	**		
N(1895) 1/2)	****		
N(1900) 3/2	+ ****	****		
N(1990) 7/2	+ **	**		
N(2000) 5/2	+ **	**		
N(2060) 5/2		***		
N(2100) 1/2	+ *	**		
N(2120) 3/2	·	***		
N(2190) 7/2	- ****	**		
N(2220) 9/2	+ ****	**		
N(2250) 9/2	- ****	**		

- inclusion of CLAS, GRAAL, MAMI, ELSA data
- confirmation of known resonances w/ improved parameters
- observation of few (!) new states

Excited states: quark model

N* resonances

Excited states: quark model

N* resonances

• parity pattern lowest states $+ \rightarrow + \rightarrow - !?!$

• effective degrees of freedom ??

universität**bonn**

Λ^* resonances 3000 2500 2350 2325 *** 2110 2100 - 0002 Wev Mass [Wev] (1600 2020 **** 1830 1820 800 **** *** ** 1690 1670 **** 1600 **** *** P =1500 1520 **** 1405 **** 140 Λg.s 1116 P = +**** 1000 9/2+ 11/2+ 13/2+ 1/2-5/2+ 7/2+ 1/2+3/2+ 3/2-5/2-7/2-9/2-11/2-13/2-Jπ H₀₉ G₀₉ L_{T2J} P_{01} P₀₃ F₀₇ $|H_{0\,11}||K_{0\,13}|$ S₀₁ D₀₅ G₀₇ F₀₅ D₀₃ I_{011} I_{0 13} parity pattern OK masses reversed ??

Excited states: quark model

H. Schmieden

universität**bonnl**

Λ* Lattice QCD: Λ(1405)

Λ* Lattice QCD: Λ(1405)

X(3872) ³⁰⁰ ³⁰⁰ ⁴ ²⁰⁰ ⁴ ¹⁰⁰ ⁶ ⁶ ⁶ ⁹ ⁹ ¹⁰⁰ ¹⁰⁰ ¹⁰⁰ ¹⁰⁰ ⁹ ¹⁰⁰ ¹⁰⁰ ⁹ ¹⁰⁰ ¹⁰

 $M(\pi^+\pi^-l^+l^-) - M(l^+l^-)$

Exotic subatomic species confirmed at Large Hadron Collider after earlier false sightings.

2.5 MeV/c²

Candidates per

data-fit

2.5 MeV/c²

Candidates per

data-fit

"Hadronic molecules" Guo, Hanhart, Meißner, Wang, Zhao, Zou Rev. Mod. Phys. 90 (2018) 1, 015004 arXiv:1705.00141

salient features "molecule"

– Weinberg's compositeness criterion: $\lambda = 0$ (pure molecule) 1 (compact)

$$a = -2\frac{1-\lambda^2}{2-\lambda^2}\left(\frac{1}{\gamma}\right) + \mathcal{O}\left(\frac{1}{\beta}\right)$$

$$r = -\frac{\lambda^2}{1-\lambda^2} \left(\frac{1}{\gamma}\right) + \mathcal{O}\left(\frac{1}{\beta}\right)$$

- $-\gamma \leftrightarrow$ momentum scale constituents:
- $-\beta \leftrightarrow$ momentum scale through forces, e.g. deuteron $1/\beta \sim 1/M_{\pi} \sim 1.4$ fm
- molecule natural near thresholds

scattering length \leftrightarrow interaction probability, i.e. x-sec

effective range \leftrightarrow distance between constituents

uds sector – threshold dynamics

17

universität**bonn**

triangle singularities

Coleman-Norton theorem: 1, 2, 3 must be nearly on mass shell

can mimic resonance

triangle singularities

Coleman-Norton theorem: 1, 2, 3 must be nearly on mass shell

can mimic resonance

or drive (dynamically generated) resonance

E. Wang, J. Xie, W. Liang, F. Guo, E. Oset, PR C 95 (2017) 015205

universitätbo

22

do/dm (µb/GeV)

Λ(1405) photoproduction – line shape

work of G. Scheluchin (paper in prepapartion) see also: arXiv:2007.08898 (NSTAR2019)

universität**bonn**

Λ(1405) photoproduction – line shape

work of G. Scheluchin (paper in prepapartion) see also: arXiv:2007.08898 (NSTAR2019)

double peak strukture @ 1395 / 1425 MeV ??

K⁺ Λ(1405) photoproduction – x-sec

work of G. Scheluchin (paper in prepapartion) see also: arXiv:2007.08898 (NSTAR2019)

K⁺ Λ(1405) photoproduction – x-sec

work of G. Scheluchin (paper in prepapartion) see also: arXiv:2007.08898 (NSTAR2019)

25

K⁺ Λ(1405) photoproduction – x-sec

work of G. Scheluchin (paper in prepapartion) see also:

25

R. Ewald et al. (CB/TAPS), PLB 713 (2012)

+ p -> K⁰ + Σ⁺ anomaly @ K* threshold

R. Ewald et al. (CB/TAPS), PLB 713 (2012)

27

 $\gamma n \rightarrow K^0 \Sigma^0$

PhD thesis K. Kohl (in preparation) see also: arXiv:2007.08896 (NSTAR2019)

data:

C. Akondi et al. [MAMI-A2] EPJ A 55 (2019) 202 BGOOD simulated bg fit BGOOD real bg fit

see also:

"The molecular nature of some exotic hadrons" Ramos, Feijoo, Llorens, Montaña Few Body Sys. 61 (2020) 4, 34 arXiv:2009.04367 (2020)

 $\gamma n \rightarrow K^0 \Sigma^0$

	c-sector		s-sector	
	meson	baryon(s)	meson	baryon(s)
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^*(2030/2080)$
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* \bar{D} + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K}+\Sigma\bar{K}^*$
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$
3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$K\bar{K}\pi$	$\Sigma \bar{K} \pi^0$
closed flavour channel	$J/\psi\;\omega$	$\chi_{c1}p$	$\phi f_0(500)$	ϕp

	c-sector		S-S	ector
	meson	baryon(s)	meson	baryon(s)
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^*(2030/2080)$
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* \bar{D} + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K} + \Sigma\bar{K}^*$
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$
3-body threshold	$D^0 \bar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$K\bar{K}\pi$	$\Sigma \bar{K} \pi^0$
closed flavour channel	$J/\psi \; \omega$	$\chi_{c1}p$	$\phi f_0(500)$	ϕp

33

	c-sector		s-sector	
	meson	baryon(s)	meson	baryon(s)
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^*(2030/2080)$
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^*D + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K} + \Sigma\bar{K}^*$
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} \neq 1^{++}$	$J^P = (3/2)^-$
3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$Kar{K}\pi$	$\Sigma \bar{K} \pi^0$
closed flavour channel	$J/\psi\;\omega$	$\chi_{c1}p$	$f_0(500)$	ϕp

	c-sec	tor	S-S	ector
	meson	baryon(s)	meson	baryon(s)
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^{*}(2030/2080)$
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* \bar{D} + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K}+\Sigma\bar{K}^*$
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$
3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$K\bar{K}\pi$	$\Sigma \bar{K} \pi^0$
closed flavour channel	$J/\psi\;\omega$	$\chi_{c1} p$	$\phi f_0(500)$	ϕp

	c-sector		s-sector	
	meson	baryon(s)	meson	baryon(s)
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^*(2030/2080)$
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* \bar{D} + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K}+\Sigma\bar{K}^*$
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$
3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ ar D^0 \pi^0$	$K\bar{K}\pi$	$\Sigma \bar{K} \pi^0$
closed flavour channel	$J/\psi\;\omega$	$\chi_{c1}p$	$\phi f_0(500)$	ϕp

36

BGOOD collaboration

S. Alef¹, P. Bauer¹, D. Bayadilov^{2,3}, R. Beck², M. Becker², A. Bella¹, J. Bieling², S. Böse², A. Braghieri⁴, K.-Th. Brinkmann⁵, P. L. Cole⁶, R. Di Salvo⁷, D. Elsner¹, A. Fantini^{7,8}, O. Freyermuth¹, F. Frommberger¹, G. Gervino^{9,10}, F. Ghio^{11,12}, S. Goertz¹, A. Gridnev³, E. Gutz⁵, D. Hammann¹, J. Hannappel^{1,19}, W. Hillert^{1,19}, O. Jahn¹, R. Jahn², J. R. Johnstone¹, R. Joosten², T. C. Jude^{1,a}, H. Kalinowsky², V. Kleber^{1,20}, F. Klein¹, K. Kohl¹, K. Koop², N. Kozlenko³, B. Krusche¹³, A. Lapik¹⁴, P. Levi Sandri^{15,b}, V. Lisin¹⁴, I. Lopatin³, G. Mandaglio^{16,17}, M. Manganaro^{16,17,21}, F. Messi^{1,22}, R. Messi^{7,8}, D. Moricciani⁷, A. Mushkarenkov¹⁴, V. Nedorezov¹⁴, D. Novinskiy³, P. Pedroni⁴, A. Polonskiy¹⁴, B.-E. Reitz¹, M. Romaniuk^{7,18}, T. Rostomyan¹³, G. Scheluchin¹, H. Schmieden¹, A. Stugelev³, V. Sumachev³, V. Tarakanov³, V. Vegna¹, D. Walther², H.-G. Zaunick^{2,5}, T. Zimmermann¹

¹ Rheinische Friedrich-Wilhelms-Universität Bonn, Physikalisches Institut, Nußallee 12, 53115 Bonn, Germany

- ² Rheinische Friedrich-Wilhelms-Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Nußallee 14-16, 53115 Bonn, Germany
- ³ Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188300, Russia
- ⁴ INFN sezione di Pavia, Via Agostino Bassi, 6, 27100 Pavia, Italy
- ⁵ Justus-Liebig-Universität Gießen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
- ⁶ Department of Physics, Lamar University, Beaumont, TX 77710, USA
- ⁷ INFN Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
- ⁸ Dipartimento di Fisica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
- ⁹ INFN sezione di Torino, Via P.Giuria 1, 10125 Turin, Italy
- ¹⁰ Dipartimento di Fisica,, Università di Torino, via P. Giuria 1, 10125 Turin, Italy
- ¹¹ INFN sezione di Roma La Sapienza, P.le Aldo Moro 2, 00185 Rome, Italy
- ¹² Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- ¹³ Institut für Physik, Klingelbergstrasse 82, 4056 Basel, Switzerland
- ¹⁴ Russian Academy of Sciences Institute for Nuclear Research, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
- ¹⁵ INFN Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
- ¹⁶ INFN sezione Catania, 95129 Catania, Italy
- ¹⁷ Dipartimento MIFT, Università degli Studi di Messina, Via F. S. D'Alcontres 31, 98166 Messina, Italy
- ¹⁸ Institute for Nuclear Research of NASU, 03028 Kiev, Ukraine
- ¹⁹ Present Address: DESY Research Centre, Hamburg, Germany
- ²⁰ Present Address: Forschungszentrum Jülich, Jülich, Germany
- ²¹ Present Address: University of Rijeka, Rijeka, Croatia
- 22 Prosent Address: Lund University & ESS, Lund, Sweden

Summary

- multi-quark objects established in (hidden) c sector
- plausible parallels in (hidden) s sector
- BGOOD ideally suited to pursue this: thresholds & low t
- K⁺ Λ(1405)
 - line shape in I = 0: double peak ??
 - photoproduction cross section: triangle driven
- $K^0 \Sigma^0 \rightarrow$ indication of LHCb analogous "multi-quark" ??
- not shown: $K^+\Lambda$, $K^+\Sigma$ & non-strange channels
- BGOOD debut results
 - overlap regions: on par with best to-date measurements
 - unique regions: qualitatively new effects
 - more to come ...

Summary

- multi-quark objects established in (hidden) c sector
- plausible parallels in (hidden) s sector
- BGOOD ideally suited to pursue this: thresholds & low t

improve statistics

- K⁺ ∧(1405)
 - line shape ir
 - photoproduce
- $K^0 \Sigma^0 \rightarrow indica$
- not shown: $K^+\Lambda$, $K^+\Sigma$ & non-strange channels

next:

- BGOOD debut results
 - overlap regions: on par with best to-date measurements
 - unique regions: qualitatively new effects
 - more to come ...

