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Flavour Tagging Technique
Time dependent measurements of mixing parameters / CP violation

require knowledge about initial B flavour

Each tagging algorithm provides:
● A tag decision (   or   or unknown)
● A “mistag probability” η  
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Measurement sensitivity:
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Standard Flavour Tagging Approach Example
The opposite side muon tagger

Part 1: Selection
μ

Same side

Opposite side

Choose best tagging muon:
● Separated from signal in phi
● IP to signal B is large
● Good muon:

● High momentum
● Good track reconstruction
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Part 2: Tagging via BDT

Mistag 
probability

η
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Infer production flavour
from track charge



  

Inclusive Tagging Approach
Full event interpretation

Part 1: Selection

B

μ

Same side

Opposite side
p
pt

|Δϕ|
IP

Opposite sideμ

Part 2: MVA

“Inclusive Tagger”

(d, η)

Tag decision Mistag 
probability

This idea is not completely new, but has never been fully implemented / optimized for LHCb
● T. Likhomanenko, D. Derkach, A. Rogozhnikov: “Inclusive Flavour Tagging Algorithm”, J. Phys. Conf. Ser. 762 (2016) 012045 

The network architecture was then further optimized by
● S. Akar, A. Camboni, D. P. O’Hanlon, B. Khanji et al. → Usage of long-short-term-memory units
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Full event
i.e. all reconstructed tracks with
union of all single tagger track features including
● Track charge
● Particle identification
● Track momenta
● Topological information like

● Phi + eta angle difference w.r.t. B meson 



  

Current Inclusive Tagger Architecture
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Current Inclusive Tagger Architecture

Track feature vectors
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Gated Recurrent Unit (GRU)
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Current Inclusive Tagger Architecture

Track feature vectors
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Current Inclusive Tagger Architecture

GRU 2

Take last output (d, η)

Track feature vectors
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Training the network in practise has been quite a challenge...

Show stopper: Correlation between random seed and tag asymmetry
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Random training seed                Raw mistag η                    



  

Loss function “glitches” are strongly
correlated to tag asymmetry

● Issue was that Network chose last training 
state instead of “best” state.

● Combined with these spikes, this resulted in 
huge asymmetries (still somewhat 
surprising to us)

● Choosing best Network state still produced 
asymmetries of up to 10% though.

● Reduced to up to 1% by choosing perfectly 
balanced training samples, i.e. 100% 
balanced instead of 99.9% balanced. Quite 
surprising as well...

Happy end of asymmetry issues

But...
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Issue Nr 2: Inconsistent features in the neural network output

Q. Führing
V. J

● Neural network output often 
contained one, sometimes 
multiple sharper spikes

● The higher the resolution, (i.e. 
the more statistics), the more 
such features could be observed

● In addition, these were very 
inconsistent between trainings

B- B+
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Solved by using smooth activation function instead of ReLU



  

Results on                            Simulation

D. P. O’Hanlon
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V. J

Tagging power                           , very similar performance on data
Tagging efficiency: 100%
Classical tagger combination: 
 

Factor 1.6 improvement
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Summary
● Inclusive tagging models have been developed and trained successfully
● Observed tagging performance on B+2JpsiK+ improvement is promising
● Major show-stoppers have been understood

● Development of taggers for neutral modes + Bs mode in progress

Run 3
● Work is ongoing to make the IFT (and classical taggers) 

run efficiently in the HLT 

● If validation studies are convincing, inclusive Tagger 
could replace classical taggers?  Easier to maintain→

● Decision will be made soon

Run 3

OBJECTS IN MIRROR ARE CLOSER

           THAN THEY APPEAR
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