

Readout Electronics of the LHCb SciFi Tracker

Jahrestreffen der deutschen LHCb-Gruppen

Daniel Berninghoff Physikalisches Institut Heidelberg

06.10.2020

Bonn

LHCb Detector

06.10.2020

Phase-I

SciFi Readout Electronics

- Single-arm forward spectrometer $2 < \eta < 5$
- Instantaneous Luminosity $\mathcal{L}_{inst} = 4 \cdot 10^{32} \, cm^{-2} s^{-1}$
- Detector readout rate R = 1 MHz

Daniel Berninghoff

2

LHCb Detector

Phase-I Upgrade

- Single-arm forward spectrometer $2 < \eta < 5$
- Instantaneous Luminosity $\mathcal{L}_{inst} = \mathcal{A} \cdot 10^{32} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Detector readout rate $R = \mathcal{X} MHz$ 40
- Replacement of
 - » Front- and back-end electronics
 - » Vertex Locator
 - » Tracking Stations
 - » SciFi
 - » Upstream Tracker

<i>гнср</i>			
-------------	--	--	--

>>

>>

>>

- C-Frame $\triangleq 1/12$ of the final detector
- Assembly & Commissioning above ground
- Mechanical support for fibre modules & services
 - » Low-voltage for readout electronics
 - » High-voltage for SiPM readout
 - » Water cooling of readout electronics \rightarrow 20°C
 - » NOVEC cooling of SiPMs $\rightarrow -40^{\circ}$ C
 - » Vacuum, Dry-Gas
 - » Optical links for control and data transmission

C-Frame Design

- C-Frame $\triangleq 1/12$ of the final detector
- Assembly & Commissioning above ground
- Mechanical support for fibre modules & services
 - » Low-voltage for readout electronics
 - » High-voltage for SiPM readout
 - » Water cooling of readout electronics \rightarrow 20°C
 - » NOVEC cooling of SiPMs \rightarrow −40°C
 - » Vacuum, Dry-Gas
 - » Optical links for control and data transmission

Readout Boxes

Schematic Structure of a Module and Readout Box (w/o blue cover)

Daniel Berninghoff

інср

Readout Box Components

Open Readout Box consisting of two identical halves (HalfROBs)

Readout Box Components

- PACIFIC Board
 - » Carrier for 4 PACIFIC ASICs
- PACIFIC ASIC
 - » 64 channels (2 ASICs per SiPM)
 - » Analogue processing of SiPM signals
 - » Digitisation into 2 bits per channel
 - » 3 tuneable thresholds

PACIFIC ASIC Channel: Analog processing & digitisation

Readout Box Components

- Cluster Board
 - » Carrier for 2 Cluster FPGAs
 - » 1 GBT-SCA
- Cluster FPGA
 - » Hit reconstruction
 - » Noise suppression
- GBT-SCA
 - » Dedicated Slow Control Adapter
 - » Control of PACIFIC ASICs and Cluster FPGAs
 - » I²C, JTAG, GPIO
 - » ADC to monitor temperatures and voltages

Readout Box Components

- Master Board
 - » 1 GBT-SCA
 - » FEASTMP DC-DC converters
 - » 8 optical links for data transmission
 - » 1 bidirectional optical link for control
 - » 8+1 GBTx ASICs
- GBTx ASIC
 - » Implements 4.8 Gb/s optical links
 - » Usable as unidirectional transmitter (data) or bidirectional transceiver (control)
 - » Distribution of 40MHz reference clock

Assembly Hall

Assembly of the C-Frames in dedicated hall on the LHCb site (LHC Point 8)

Assembly Hall at night 4 C-Frames can be assembled at the same time

Status

C1	C2	C3	C4	C5	C6	C7
eted	I	<mark>n Prog</mark>	ress		Оре	n
	C1	C1 C2 C1 C2 C C C C C C C C	C1 C2 C3 I I I	C1C2C3C4II	C1 C2 C3 C4 C5 I I I I I I I I I I I I I I I I I I I I I I I I I	C1C2C3C4C5C6III <tdii< td="">IIIIII<tdii< td=""><tdii< td="">IIIIII<tdii< td=""><tdiii< td="">IIIIII<tdiii< td=""><tdiii< td="">IIIIII<tdiii< td=""><tdiii< td="">IIIIII<tdiii< td=""><tdiiii< td="">IIIIII<tdiiii< td=""><tdiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii< td=""></tdiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii<></tdiiii<></tdiiii<></tdiii<></tdiii<></tdiii<></tdiii<></tdiii<></tdiii<></tdii<></tdii<></tdii<></tdii<>

Status

C-Frame	C1	C2	C3	C4	C5	C6	C7
Mechanics							
Water-Cooling							
NOVEC-Cooling							
Dry-Gas							
Cabling							
Modules							
Heating Wires							
Electronics							
Optical Fibres							
Commissioning							
Legend: Compl	eted	l	<mark>n Prog</mark>	ress		Оре	n
06 10 2020 SciEi Readout Electronics							

Electronics Commissioning

- Step-by-step verification of each component
- Ranges from basic functional to full system tests
- Results are presented in Commissioning Reports and stored in database
- Full procedure takes about 2 weeks per C-Frame

Daniel Berninghoff

16

C-Frame Commissioning

Optical Power Measurement

C-Frame Commissioning

- Measure power of optical transmitters arriving at the DAQ server
- Crucial measurement to ensure stable connection in final setup underground with ~300m optical fibres and additional patch panels
- Not much margin for some optical links
 - » Careful treatment and cleaning of fibres and lenses

C-Frame Commissioning

Temperature Sensor Readings

82 temperature sensors per Readout Box

Temperature Trend

M2

Sensor Position

M3

- Ensure functioning of all sensors
- Locate bad thermal connections

M1

M0

T2L1Q2

20

M4

0

20

Entries

Daniel Berninghoff

Full System Test

C-Frame Commissioning

- Dedicated light injection system
 - » Illuminate SiPMs with pulsed light
- Commissioning: Test for dead channels without the need of particles

Schematic Layout of the SciFi Light Injection System

06.10.2020

Full System Test

- Dedicated light injection system
 - » Illuminate SiPMs with pulsed light
- Commissioning: Test for dead channels without the need of particles
- PACIFIC: Can only measure integrated ADC spectrum by scanning thresholds through dynamic range
 - » Extract parameters like mean number of photons or gain by fitting the curve

Full System Test

- Verify that all \sim 50k channels of a C-Frame detect light (μ > 0)
- Structure originates from light distribution of the light injection system
 - » Light bars are handmade

Summary & Outlook

- 3 (out of 12) C-Frames have been fully assembled and commissioned to date
 - » Commissioning of 4th C-Frame ongoing
 - » Assembly of 3 other C-Frames ongoing
- Delayed due to pandemic
 - Scientists and technicians from different countries involved in >> assembly and commissioning
 - Commissioning can be continued remotely and with people **>>** already on site
 - Situation in the near future unclear **>>**
- Gained a lot of experience along the way
 - Developing tools and software **>>**
 - Operate the detector and process the large amount of data **>>**

Daniel Berninghoff

BACKUP

Test Beam

Setup

SPS north area H8 beam line

- 180GeV protons/pions
- 1cm beam width
 - Needed large translation table for module (50×250cm²) scans
- Beam asynchronous to our 40MHz readout
 - Required additional timestamps to select in-time events offline
- Recorded ~500k events/spill, only need 2 spills to get enough statistics →Short runs, nice for shifters

TimePix3 telescope

- Tracks for efficiency & resolution measurements
- Provided trigger + fine timestamps for offline selection
 - Synchronised to our DAQ

Test Beam

Setup

Results from Test Beam

July 2018 @ SPS

- First time
 - » Putting all detector components of 2 ROBs together
 - » Reading out 32 data links @ 40 MHz
 - » Calibrating 4k channels
 - » 12k configurable thresholds

Test Beam Setup with 2 Readout Boxes

06.10.2020

Results from Test Beam

July 2018 @ SPS

First time

- » Putting all detector components of 2 ROBs together
- » Reading out 32 data links @ 40 MHz
- » Calibrating 4k channels
 - » 12k configurable thresholds
- Target performance parameters fulfilled!
 - » Hit efficiency: 99.47%
 - » Correlated noise cluster rate: 2%
 - » Hit resolution: 65µm
- Online clustering verified

More details from my colleague Lukas Witola: <u>Tomorrow at 17:45 in S01 (T 90.8)</u>

Test Beam

Spatial Resolution

- Resolution ~65µm for both modules
- ✓ Better than required (≤100µm)

Test Beam

Spillover = Correlated Noise Clusters

Probability to find a cluster from BX_n in BX_{n+1} at the same position

- Shaper settings have great influence
- Two settings:
 - 1. More undershoot
 - 2. Less undershoot & wider

Setting 1: 24% Setting 2: 2%

SciFi Readout Electronics

In Numbers

Scintillating Fibres

Fibre Modules

- 8 fibre mats per module
- Light yield:
 - » Unirradiated: 20pe
 - » After 10 years in hottest area: 12pe
- Support structure
 - » 200µm carbon
 - » 20mm honeycomb
- Alignment precision of 50µm over 5m
- Production finished

SiPM

ΔV [V]

Photo detection efficiency for different over-voltages

Dark count rate for irradiated detector for different over-voltages

PACIFIC

- Low <u>Power A</u>SIC for S<u>ci</u>ntillating <u>Fi</u>bre Tracker
 > < 12mW per channel
- Hamming encoding of configuration registers
 - » Correct single bit flip on the fly
 - » Detect multi bit flip an raise error

Radiation Environment

35 kGy in the hottest region around the beam pipe

Radiation Environment

<i>LHCb</i> ГНСр			
---------------------	--	--	--

 $6 \cdot 10^{11} n_{eq} \text{ cm}^{-2}$ at the SiPM location (2.5m)

Clustering

Algorithm

- Making use of 3 comparators
- 1. Low threshold
 - » Just above dark noise rate
- 2. Middle threshold ("seed")
 - » Slightly above low threshold
 - » Starting point for a cluster
- 3. High threshold
 - » Significantly larger
 - » Accept high signal single channel clusters

Cluster FPGA building clusters from 128 SiPM channels

Backend Electronics

PCIe40 card (so-called TELL40) Up to 48 optical links

SuperMicro 4029GP-TRT server with 8 TELL40 cards and optical fibres connected

LHCb DAQ Network

06.10.2020

Module Installation

Readout Box Installation

Cabling

Readout Box QA

C-Frame Commissioning

Electronics Commissioning Procedure

- Step-by-step verification of each component
- Ranges from basic functional to full system tests
- Results are stored in Commissioning Reports
- Full procedure takes about 2 weeks per C-Frame

C-Frame Commissioning

Bit-Error-Rate Test (WIP)

4. PACIFIC Clock Scan

LHCb

Using work-arounds

- No more interrupted intervals
- Common interval width = 1.3ns