Probing CP structure of the Higgs boson couplings with the CMS experiment

High energy seminar, University of Warsaw, 3 April 2020

Michał Bluj National Centre for Nuclear Research, Poland

Introduction

- The main motivation to look for CP-violation (CPV) in the Higgs sector is matter-antimatter asymmetry in Universe
 - CPV one of Sakharov conditions
 (for dynamical generation of baryon asymmetry)
 - CPV present in the Standard Model (via CKM) not sufficient
 => new sources needed
- Search for anomalous, i.e. not predicted by SM, CP-odd terms in couplings of the Higgs boson – CPV via interference effects with CPeven terms
 - Also presence of other CP-even anomalous terms probed

Sources of CPV

${\sf J}_{\sf I}$ and the second second

[Not exhaustive list]

Higgs – gauge boson couplings (CP-odd term)

$$c_{VV}H_{phys}F_{\mu\nu}\widetilde{F}^{\mu\nu}$$
, where $\widetilde{F}_{\mu\nu}\equiv\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}$ (dual tensor)

Higgs Yukawa couplings

$$|c_f| \frac{m_f}{v} \overline{f} (\cos \varphi_f + i \gamma_5 \sin \varphi_f) f H_{phys}$$

◎ Higgs – scalar coupling

CP-violating terms in the scalar potential

$$V_{H} \sim -(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + H.c.) + [\frac{1}{2} \lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \lambda_{6} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{1}^{\dagger} \Phi_{2}) + \lambda_{7} (\Phi_{2}^{\dagger} \Phi_{2}) (\Phi_{1}^{\dagger} \Phi_{2}) + H.c.]$$

Sources of CPV

J

[Not exhaustive list]

Higgs – gauge boson couplings (CP-odd term)

$$E_{VV}H_{phys}F_{\mu\nu}\widetilde{F}^{\mu\nu}$$
, where $\widetilde{F}_{\mu\nu}\equiv\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}$ (dual tensor)

Higgs Yukawa couplings

$$|c_f| \frac{m_f}{v} \overline{f} (\cos \varphi_f + i \gamma_5 \sin \varphi_f) f H_{phys}$$

• Higgs – scalar coupling CP-violating terms in the scalar notential It requires additional Higgs fields $V_H \sim -(m_{12}^2 \Phi_1^{\dagger} \Phi_2 \text{and will not be discussed today}) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + H.c.]$

Sources of CPV: H-gauge coupling

Higgs – gauge boson couplings (CP-odd term)

 $C_{VV}H_{phys}F_{\mu\nu}\widetilde{F}^{\mu\nu}$

- Effective, non-renormalisable, operator can be generated by exchange of BSM particles => suppressed by BSM scale Λ as $1/\Lambda^2$
- @ LHC: accessible vertices:
 - $\circ~$ HZZ/HWW VBF & VH production and H $_{\rightarrow}$ ZZ/WW decays
 - ∘ HZγ/Hγγ H → Zγ/γγ decays (including $\gamma^* \rightarrow 2\ell$)
 - Hgg ggF production
 - Can be treated effective interaction as Hyy or split to elementary Yukawa couplings (assuming loop content, e.g. t quark dominance)
 - ggF + 2 jets topology used

Sources of CPV: H-gauge coupling

Higgs – gauge boson couplings (CP-odd term)

 $C_{VV}H_{phys}F_{\mu\nu}\widetilde{F}^{\mu\nu}$

 Effective, non-renormalisable, operator – can be generated by exchange of BSM particles => suppressed by BSM scale Λ as 1/Λ²

@ LHC: accessible vertices:

HZZ/HWW – VBF & VH production and H \rightarrow ZZ/WW decays

• $HZ\gamma/H\gamma\gamma - H \rightarrow Z\gamma/\gamma\gamma$ decays (including $\gamma^* \rightarrow 2\ell$)

◎ Studies concentrated (until now) on the $H \rightarrow 4\ell$ decay and VBF production modes

- Clear signature,
- Access to the full kinematics
- => I will focus on this today

Sources of CPV: H-gauge coupling

Higgs – gauge boson couplings (CP-odd term)

 $C_{VV}H_{phys}F_{\mu\nu}\widetilde{F}^{\mu\nu}$

 Effective, non-renormalisable, operator – can be generated by exchange of BSM particles => suppressed by BSM scale Λ as 1/Λ²

@ LHC: accessible vertices:

- $\circ~$ HZZ/HWW VBF & VH production and H $_{\rightarrow}$ ZZ/WW decays
- $HZ\gamma/H\gamma\gamma H \rightarrow Z\gamma/\gamma\gamma$ decays (including $\gamma^* \rightarrow 2\ell$)

Hgg – ggF production

- Work well advanced, but not public results, yet
 - ggF + 2 jets topology (access to full kinematics)
 - Several Higgs decay modes
 - => Not discussed today
 - Results expected this Summer

HVV amplitude

$$A(HZZ/HWW) \sim \begin{bmatrix} a_{1} + \frac{q_{V1}^{2} + q_{V2}^{2}}{\Lambda_{1}^{2}} + \frac{(q_{V1} + q_{V2})^{2}}{\Lambda_{Q}^{2}} \end{bmatrix} m_{V}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + a_{2} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu}$$

 $m_{v'} q_{v'} \varepsilon_{v} - \text{mass}$, 4-momentum and polarization of V boson, $f^{\mu\nu} = \varepsilon_{v}^{\mu} q^{\nu} - \varepsilon_{v}^{\mu\nu} q^{\mu}$ – field strength tensor

- $_{\odot}$ SM: a₁≠0, other 0 (at tree level)
- $_{\odot}$ a₃ CP-odd term (others CP-even) => CPV via interference
- \odot assumed $a_i \equiv a_i^{ZZ} \equiv a_i^{WW}$ relevant for VBF and W/ZH production
 - It is possible to recalculate to have other relation
- Constant and real couplings assumed (sensible for m_{BSM} >>m_H) HEP seminar, 3. 4. 2020
 cf. CMS Collaboration, Phys. Rev. D 92, 012004 (2015) ⁸

Higgs Yukawa couplings

$$c_f \Big| \frac{m_f}{v} \overline{f} (\cos \varphi_f + i \gamma_5 \sin \varphi_f) f H_{phys}$$

- @ LHC: accessible vertices:
 - $H\tau\tau H \rightarrow \tau\tau$ decays:
 - Study correlation of τ^+ and τ^-spins
 - Difficult as tau momenta not accessible, but visible decay products retain (part) of the correlation
 - **Htt** ttH production:
 - Study kinematics of the process
 - Several decay modes can be used
 - Htt also present in the loop of ggF production

Higgs Yukawa couplings

@ LHC: <u>accessible vertices</u>:

$$c_f \Big| \frac{m_f}{v} \overline{f} (\cos \varphi_f + i \gamma_5 \sin \varphi_f) f H_{phys} \Big|$$

- HTT H → TT decays:
 Work well advanced, but ⁺ public results expected this Summer
 => Not discussed today nta not accessible, but visible decay products retain (part) of the correlation
 - **Htt** ttH production:
 - Study kinematics of the process
 - Several decay modes can be used
 - Htt also present in the loop of ggF production

Higgs Yukawa couplings

$$c_f \Big| \frac{m_f}{v} \overline{f} (\cos \varphi_f + i \gamma_5 \sin \varphi_f) f H_{phys}$$

Htt amplitude

$$A(Htt) \sim -\frac{m_t}{v} \overline{\psi}_t \Big(\mathbf{\kappa}_t + i \widetilde{\kappa}_t \gamma_5 \Big) \psi_t$$

• In SM: $\kappa_t = 1$ (CP-even), $\tilde{\kappa}_t = 0$ (CP-odd)

 Unlike in HVV CP-even and CP-odd couplings both arise at the same order in q^2

Parametrisation

We measure couplings in terms of fractions:

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j},$$

with σ_i - cross section for $a_i = 1, a_{k \neq i} = 0$ HVV coupling: $\sigma_i(H \rightarrow 2e2\mu)$

 \odot In Htt we drop σ to avoid PDF dependence:

$$f_{CP}^{Htt} = \frac{|\widetilde{k_t}|^2}{|k_t|^2 + |\widetilde{k_t}|^2}$$

Finally:

$$\varphi_{ai} = \arg\left(\frac{a_i}{a_1}\right)$$
, i.e. relative phase of a_i ,

which is $0 \text{ or } \pi$ for real couplings $\Rightarrow \cos(\varphi_{ai}) = \operatorname{sgn}(a_{ai} / a_1)$ HEP seminar, 3. 4. 2020

Likelihood-based discriminants

MELA (Matrix Element Likelihood Analysis):

 Neyman-Pearson lemma: best observable to distinguish two hypotheses – signal (*sig*) and alternative (*alt*) is:

$$D_{alt} = \frac{P_{sig}}{P_{sig} + P_{alt}}, \ 0 \leq D_{alt} \leq 1$$

where *P* depend on event kinematics.

alt can be alternative production process (to categorise events), background (non-Higgs process) or anomalous coupling a_i model:

$$D^{VBF, VH} = \frac{P^{VBF, VH}}{P^{VBF, VH} + P^{ggF}} \quad D_{bkg} = \frac{P_{sig}}{P_{sig} + P_{bkg}} \quad D_{ai} = \frac{P_{ai}}{P_{ai} + P_{SM}}$$

© To account for interference D_{int} is defined

$$D_{int} = \frac{P_{int}}{2\sqrt{P_{ai}P_{SM}}}, -1 \le D_{int} \le 1$$

HEP seminar, 3.4.2020

cf. CMS Collaboration, Phys. Rev. D 99, 112003 (2019) 14

Probing structure of HVV couplings

Probing HVV

Two Higgs decay modes used:

- - $_{\circ}$ on-shell 105 < m_{4l} < 140 GeV
 - \circ off-shell m_{4l} > 220 GeV
 - Categories (production) using MELA (only 2016-2017 data)
 - VBF-tagged
 - VH-tagged
 - untagged (rest)
- o H→TT: $τ_h τ_h$, μ $τ_h$, e $τ_h$, eμ
 - Categories (production) using kinematic cuts
 - VBF category (2-jet, high m_{ii}, ...)
 - boosted category (1-jet or 2-jets no-VBF)
 - 0-jets category

HEP seminar, 3.4.2020

cf. CMS Collaboration, Phys. Rev. D 99, 112003 (2019)

cf. CMS Collaboration, 1903.06973 $^{\rm 16}$

Ś

Probing HVV with $H \to 4\ell$ at CMS

- \odot Each anomalous coupling tested separately (here focus on f₃)
- Production (when available) + decay info used
 - $_{\odot}~$ Simultaneous fit of $D_{_{bkg}},~D_{_{0-}}$ (a_{_3} contr.), $D_{_{CP}}$ (a_{_1} a_{_3} interf.) and signal strength modifiers $\mu_{_{F}},~\mu_{_{V}}$
 - Usage of $\mu_{_{F'}}$ $\mu_{_V}$ prevents that excess in VBF/VH categories is interpreted as presence of BSM coupling
- Used 80.2/fb (13TeV) + 5.1/fb (7TeV) + 19.7/fb (8TeV)

Probing HVV with $H \rightarrow \tau \tau$

Production info + H kinematics

- $_{\circ}~m_{\pi}$ (+ other quantity deepened on channel) in 0-jets category
- $_{\circ}$ m_{$_{\pi}$}, p_{$_{\tau}$}^H in boosted category (1-jet or >1 jet no-VBF)
- $_{\circ}$ m_{π}, m_{ii}, D₀₋ (a₃ contr.), D_{CP} (a₁ a₃ interf.) in VBF category</sub>

and signal strength modifiers μ_{F} , μ_{V}

• Used 35.9/fb (13TeV)

HEP seminar, 3.4.2020

cf. CMS Collaboration, 1903.06973 ¹⁸

Results

5 J means and the second se

Production dominates low f_{ai} , while decay high f_{ai}

cf. CMS Collaboration, Phys. Rev. D 99, 112003 (2019) cf. CMS Collaboration, 1903.06973 ¹⁹

HEP seminar, 3.4.2020

Results: on-shell combination

Parameter	Observed / (10^{-3})		Expected / (10^{-3})	
	68% CL	95% CL	68% CL	95% CL
$f_{a3}\cos(\phi_{a3})$	0.00 ± 0.27	[-92, 14]	0.00 ± 0.23	[-1.2, 1.2]
$f_{a2}\cos(\phi_{a2})$	$0.08\substack{+1.04 \\ -0.21}$	[-1.1, 3.4]	$0.0\substack{+1.3\\-1.1}$	[-4.0, 4.2]
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.00\substack{+0.53\\-0.09}$	[-0.4, 1.8]	$0.00\substack{+0.48\\-0.12}$	[-0.5, 1.7]
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.0\substack{+1.1\\-1.3}$	[-6.5, 5.7]	$0.0\substack{+2.6\-3.6}$	[-11, 8.0]

 f_{ai} agree with 0 (SM) with $10^{-3} - 10^{-2}$ precision at 95% CL

		<u> </u>
Parameter	Observed	Expected
a_3/a_1	[-0.81, 0.31]	[-0.090, 0.090]
a_2/a_1	[-0.055, 0.097]	[-0.11, 0.11]
$(\Lambda_1 \sqrt{ a_1 }) \cos(\phi_{\Lambda 1})$ (GeV)	$[-\infty, -650] \cup [440, \infty]$	$[-\infty, -610] \cup [450, \infty]$
$(\Lambda_1^{Z\gamma}\sqrt{ a_1 })\cos(\phi_{\Lambda 1}^{Z\gamma})$ (GeV)	$[-\infty, -400] \cup [420, \infty]$	$[-\infty, -360] \cup [390, \infty]$

0 = 0/(C)

 a_1/a_1 agree with 0 (SM) with 10⁻¹ precision

cf. CMS Collaboration, Phys. Rev. D 99, 112003 (2019) cf. CMS Collaboration, 1903.06973 $^{\rm 20}$

HEP seminar, 3.4.2020

Results: on-shell & off-shell comb.

- BJ in the matrix of th
- Anomalous couplings cause increase of off-shell events
 Results depend on assumed Γ_H

Results: on-shell & off-shell comb.

- BJ
- Anomalous couplings cause increase of off-shell events
- $_{\odot}\,$ Results depend on assumed $\Gamma_{_{
 m H}}$

Parameter	Scenario	Observed	Expected
$f_{a3}\cos{(\phi_{a3})}$	on-shell	$-0.0001^{+0.0004}_{-0.0015}$ [-0.163, 0.090]	$0.0000^{+0.0019}_{-0.0019}$ [-0.082, 0.082]
	any $\Gamma_{\rm H}$	$0.0000^{+0.0003}_{-0.0010}$ [-0.0165, 0.0087]	$0.0000^{+0.0015}_{-0.0015}$ [-0.038, 0.038]
	$\Gamma_{\rm H}=\Gamma_{\rm H}^{\rm SM}$	$0.0000^{+0.0003}_{-0.0009}$ [-0.0067, 0.0050]	$0.0000^{+0.0014}_{-0.0014}$ [-0.0098, 0.0098]
$f_{a2}\cos\left(\phi_{a2}\right)$	on-shell	$0.0004^{+0.0026}_{-0.0006}$ [-0.0055, 0.0234]	$0.0000^{+0.0030}_{-0.0023}$ [-0.021, 0.035]
	any $\Gamma_{\rm H}$	$0.0004^{+0.0026}_{-0.0006}$ [-0.0035, 0.0147]	$0.0000^{+0.0019}_{-0.0017}$ [-0.015, 0.021]
	$\Gamma_{\rm H} = \Gamma_{\rm H}^{\rm SM}$	$0.0005^{+0.0025}_{-0.0006}$ [-0.0029, 0.0129]	$0.0000^{+0.0012}_{-0.0016} \ [-0.010, 0.012]$
$f_{\Lambda 1} \cos{(\phi_{\Lambda 1})}$	on-shell	$0.0002^{+0.0030}_{-0.0009}$ [-0.209, 0.089]	$0.0000^{+0.0012}_{-0.0006} \ [-0.059, 0.032]$
	any $\Gamma_{\rm H}$	$0.0001^{+0.0015}_{-0.0006}$ [-0.090, 0.059]	$0.0000^{+0.0013}_{-0.0007}$ [-0.017, 0.019]
	$\Gamma_{\rm H} = \Gamma_{\rm H}^{\rm SM}$	$0.0001^{+0.0015}_{-0.0005}$ [-0.016, 0.068]	$0.0000^{+0.0013}_{-0.0006} \ [-0.015, 0.018]$
$\phi_{\Lambda 1}^{Z\gamma}\cos\left(\phi_{\Lambda 1}^{Z\gamma}\right)$	on-shell	$0.0000^{+0.3554}_{-0.0087} \left[-0.17, 0.61\right]$	$0.0000^{+0.0091}_{-0.0100}$ [-0.098, 0.343]
			95%CL

68% CL [95% CL]

Parameter	Scenario	Observed	Expected
a_3/a_1	on-shell	[-1.13, 0.80]	[-0.76, 0.76]
	any $\Gamma_{\rm H}$	[-0.33, 0.24]	[-0.50, 0.50]
	$\Gamma_{H}=\Gamma_{H}^{SM}$	[-0.21, 0.18]	[-0.25, 0.25]
a_2/a_1	on-shell	[-0.12, 0.26]	[-0.24, 0.31]
	any $\Gamma_{\rm H}$	[-0.098, 0.202]	[-0.21, 0.25]
	$\Gamma_{H}=\Gamma_{H}^{SM}$	[-0.089, 0.189]	[-0.17, 0.18]
$\Lambda_1 \sqrt{ a_1 } \cos(\phi_{\Lambda 1})$ (GeV)	on-shell	$[-\infty, -130] \cup [160, \infty]$	$[-\infty, -180] \cup [210, \infty]$
	any $\Gamma_{\rm H}$	$[-\infty, -160] \cup [180, \infty]$	$[-\infty, -250] \cup [240, \infty]$
	$\Gamma_{H}=\Gamma_{H}^{SM}$	$[-\infty, -250] \cup [170, \infty]$	$[-\infty, -260] \cup [250, \infty]$
$\left(\int_{1}^{Z\gamma} \sqrt{ a_1 } \right) \cos \left(\phi_{\Lambda 1}^{Z\gamma} \right) $ (GeV)	on-shell	$[-\infty, -170] \cup [100, \infty]$	$[-\infty, -200] \cup [130, \infty]$

HEP seminar, 3. 4. 2020

cf. CMS Collaboration, Phys. Rev. D 99, 112003 (2019) 22

HVV: summary & outlook

- HL-LHC with 3/ab \bigcirc
- \circ Constrain f₁ to 10⁻⁴ level $f_{a3}cos(\phi_{a3})$ in [-1.6,1,6]×10⁻⁴ HEP seminar, 3.4.2020

Probing structure of Htt coupling

Htt coupling: analysis strategy

- $H \rightarrow \gamma \gamma$ decay (full Run-2 dataset of 137/fb):
- $_{\odot}~$ Two high-p_ islated photons + jets and leptons
- Two independent topologies:

Hadronic:

- $-N_{lep}=0$
- $= N_{jet} ≥ 3, N_{b-tag} ≥ 1$ $= m_{vv} > 100 \text{ GeV}$

Leptonic:

- N_{lep}≥ 0
 N_{jet}≥ 1
 m_{vv}>100 GeV
- BDT-bkg discriminant (one for each category) to distinguish ttH signal from background (inc. other Higgs production modes)
 - Exploits event kinematics (excl. m_{yy}),
 photon-ID and b-tagging quality
 - Two signal enriched regions (for each category) for CP measurement

cf. CMS Collaboration, 1903.06973 25

HEP seminar, 3. 4. 2020

Probing Htt coupling

- D₀ to distinguish betheeen CP-even (0⁺) and CP-odd (0⁻) coupling
 - => dedicated BDT instead of ME-based likelihood .
 - Performence proven to be as for ME-based discriminant, but more handy in complex toplology thanks to shorter evaluation time / event
- \circ **D**₀ trained using
 - $_{\circ}$ Kinenametics of γγ-pair: p₁/m, cos(φ), rapidity,
 - $_{\odot}~$ 4-momenta and b-tag score of 6 leading (in $p_{_{T}})$ jets
 - Number of leptons and 4-momentum of leading lepton (if present)
- Not correlated with BDT-bkg
- Discriminant sensitive to CP-even CP-odd interfernece (D_{CP}) not defined due to unknown flavours of light jets

Probing Htt coupling

- Parameters of interest signal strenght (μ) and fractional contribution of CP-odd component (|f_{CP}|) extracted in simultaneus fit of m_{yy} in 12 event categories
 2 toplogies x 2 RDT bkg regions x 2 D, bins
 - $_{\circ}$ 2 toplogies x 2 BDT-bkg regions x 3 D₀ bins
- $_{\odot}~$ The m $_{_{VV}}$ distribution in data modeled by sum of two contributions
 - Signal peak (Cristal-Ball+Gauss, from MC)
 - \circ Non-resonant background (shape from m^{*}_v sidebands)

cf. CMS Collaboration, 1903.06973 28

Htt coupling: results

 ${\sf J}_{\sf I}$, where the maximum manimum m

- Data agree with CP-even coupl. (0⁺):
 |f_{CP}| = 0.00 ± 0.32 (exp: 0.00 ± 0.50)
 - If | < 0.66 at 95% CL (exp: <0.83)
- Pure CP-odd coupling (0⁻) excluded at 3.2σ (exp: 2.5σ)
- Measured constrains tighter than expected because of signal rate above expectatioins:

 $\mu = 1.39^{+0.37}_{-0.30}$

cf. CMS Collaboration, 1903.06973²⁹

Summary

CP violation in Higgs sector an appealing opportunity

Searches performed to date focus on HVV coupling

- Handy experimental setup thanks to purity of the H → 4ℓ decay and VBF production process, and possibility to access 4-momenta of all particles
 Current precision in probing CP-odd HVV coupling (wrt SM one) at ~10⁻³ level
- $\circ~$ Precision at <10⁻⁴ level expected with 3/fb of HL-LHC

but no hint of CP violation observed (yet?)

- First probing CP structure of Hff couplings with ttH, $H \rightarrow \gamma \gamma$ are on the place
 - Fractional contribution of CP-odd component is measured to be 0.00±0.33 (pure CP-odd excluded at 3.2σ)

Measurements with other decay modes and with $H \rightarrow \tau\tau$ decays using full Run-2 dataset of 137/fb are ongoing => results this Summer HEP seminar, 3. 4. 2020

THANK YOU!

HVV parametrisation (CMS)

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2}\right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}.$$

 $m_{_{V^{\prime}}} \; q_{_{V^{\prime}}} \; \varepsilon_{_{V}} -$ mass, 4-momentum and polarization of V boson,

 $f^{\mu\nu} = \varepsilon_{\nu}^{\ \mu} q^{\nu} - \varepsilon_{\nu}^{\ \mu\nu} q^{\mu}$ – field strength tensor

- ◎ In SM only $a_1^{ZZ} \neq 0$ and $a_1^{WW} \neq 0$ at tree level, assumed $a_1^{ZZ} = a_1^{WW}$
- $_{\odot}$ a₃ CP-odd => CPV via interference with CP-even
- Assuming constant and real couplings (sensible for m_{BSM} >> m_H) it is eqiv. to eff. Lagrangian:

$$\begin{split} L(\text{HVV}) &\sim a_1 \frac{m_Z^2}{2} \text{HZ}^{\mu} Z_{\mu} - \frac{\kappa_1}{(\Lambda_1)^2} m_Z^2 \text{HZ}_{\mu} \Box Z^{\mu} - \frac{1}{2} a_2 \text{HZ}^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_3 \text{HZ}^{\mu\nu} \tilde{Z}_{\mu\nu} \\ &+ a_1^{\text{WW}} m_W^2 \text{HW}^{+\mu} W_{\mu}^{-} - \frac{1}{(\Lambda_1^{\text{WW}})^2} m_W^2 \text{H} \left(\kappa_1^{\text{WW}} W_{\mu}^{-} \Box W^{+\mu} + \kappa_2^{\text{WW}} W_{\mu}^{+} \Box W^{-\mu} \right) \\ &- a_2^{\text{WW}} \text{HW}^{+\mu\nu} W_{\mu\nu}^{-} - a_3^{\text{WW}} \text{HW}^{+\mu\nu} \tilde{W}_{\mu\nu}^{-} \\ &+ \frac{\kappa_2^{Z\gamma}}{\left(\Lambda_1^{Z\gamma}\right)^2} m_Z^2 \text{HZ}_{\mu} \partial_{\nu} F^{\mu\nu} - a_2^{Z\gamma} \text{HF}^{\mu\nu} Z_{\mu\nu} - a_3^{Z\gamma} \text{HF}^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_2^{\gamma\gamma} \text{HF}^{\mu\nu} F_{\mu\nu} - \frac{1}{2} a_3^{\gamma\gamma} \text{HF}^{\mu\nu} \tilde{F}_{\mu\nu}, \\ &\text{ cf. CMS Collaboration, Phys. Rev. D 92, 012004 (2015)^{32} \end{split}$$

Htt sig. enhancement (BDT-bkg)

- Solution BDT discriminant (one for each topology) to distinguish ttH, H → yy signal from background: tt+X (X=yy, y+jet, jets), yy, W/Z+y, but also H → yy from production modes other than ttH
 - QCD background (y+jets) in the hadronic topology estimated from collision data ("fake rate" method), other processes taken for MC simulation

BDT-bkg input features

Hadronic only Leptonic only

Category		Features		
	$\gamma_1 p_T / m_{\gamma\gamma}$	$\gamma_1 \eta$	γ_1 Pixel Seed Veto	
Photon Kinematics	$\gamma_2 p_T / m_{\gamma\gamma}$	$\gamma_2 \eta$	γ_2 Pixel Seed Veto	
	$\operatorname{Max}\gamma\operatorname{ID}\operatorname{MVA}$	Min γ ID MVA		
	Jet 1 p_T	Jet 1 η	Jet 1 b-tag score	
	Jet 2 p_T	Jet 2 η	Jet 2 b-tag score	
	Jet 3 p_T	Jet 3 η	Jet 3 b-tag score	
Jet Kinematics	Jet 4 p_T	Jet 4 η	Jet 4 b-tag score	
	Max b-tag score	2nd max b-tag score		
	N_{jets}	H_T		
DiPhoton Kinomatics	$p_T^{\gamma\gamma}/m_{\gamma\gamma}$	$Y_{\gamma\gamma}$	$ \cos(\Delta\phi)_{\gamma\gamma} $	
DIFICION KINEMATICS	$\Delta R_{\gamma\gamma}$	$ \cos(\text{helicity angle}(\theta)) $		
Lepton Kinematics	lepton p_T	lepton η	$N_{leptons(tightID)}$	
Event-level Kinematics	E_T^{miss}			
Di-photon / $t\bar{t} + \gamma\gamma$ suppression	ssion dedicated DNNs (more on next slide)			
Top background suppression	Top tagger BDT (more on next slide)			

Improves BDT-bkg performance by \sim 5% (each) in terms of expected significance

HEP seminar, 3. 4. 2020

ATLAS analyses

HVV parametrisation (ATLAS)

ATLAS uses (a bit) different parametrisation of eff. Lagrangian (JHEP 11 (2013) 043)

$$\begin{aligned} \mathcal{L}_{0}^{V} = & \left\{ \kappa_{\mathrm{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right. \\ & \left. - \frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \tan \alpha \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \right. \\ & \left. - \frac{1}{4} \frac{1}{\Lambda} \left[\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \tan \alpha \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \right. \\ & \left. - \frac{1}{2} \frac{1}{\Lambda} \left[\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \tan \alpha \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} \chi_{0} \end{aligned}$$

- $_{\odot}$ tanακ_{AVV} (V=g,Z,W) CP-odd couplings (=a₃^{VV})
- ◎ ∧ cut-off energy (BSM scale), 1 TeV in this study
- Anomalous coupling assumed to be same for ZZ and WW:

$$\circ \quad \mathbf{K}_{\mathsf{HVV}} \equiv \mathbf{K}_{\mathsf{HZZ}} = \mathbf{K}_{\mathsf{HWW}}, \ \mathbf{K}_{\mathsf{AVV}} \equiv \mathbf{K}_{\mathsf{AZZ}} = \mathbf{K}_{\mathsf{AWW}}$$

 \odot α (redundant parameter) set π/4, so that tanα $\kappa_{AVV} = \kappa_{AVV}$

Probing HVV with $H \rightarrow 4\ell$ at ATLAS

- Events divided onto 10 categories
 - cross-section measurement in phasespace regions populated by different processes
 - $_{\circ}$ on-shell: 118 < m_{4l} < 129 GeV
- Presence of anomalous HVV couplings will cause different event distributions across categories compared to SM

=> use event yields to probe HVV couplings

36.1/fb of 13TeV data used

Ś

$H \to 4\ell$ event yields at ATLAS

Reconstructed	Signal	ZZ^*	Other	Total	Observed	
event category		background	backgrounds	expected		
0j	26.8 ± 2.5	13.7 ± 1.0	2.23 ± 0.31	42.7 ± 2.7	49	
$1j$ - $p_{\rm T}^{4\ell}$ -Low	8.8 ± 1.1	3.1 ± 0.4	0.53 ± 0.07	12.5 ± 1.2	12	
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Med	5.4 ± 0.7	0.88 ± 0.12	0.38 ± 0.05	6.7 ± 0.7	9	
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	1.47 ± 0.24	0.139 ± 0.022	0.045 ± 0.007	1.65 ± 0.24	3	Excess in both
$\operatorname{VBF-enriched-} p_{\operatorname{T}}^{j}\operatorname{-Low}$	6.3 ± 0.8	1.08 ± 0.32	0.40 ± 0.04	7.7 ± 0.9	16	VBE-enriched
$\operatorname{VBF-enriched-} p_{\operatorname{T}}^{j}\operatorname{-High}$	0.58 ± 0.10	0.093 ± 0.032	0.054 ± 0.006	0.72 ± 0.10	3	
VH -Had-enriched- $p_{\rm T}^{4\ell}$ -Low	2.9 ± 0.5	0.63 ± 0.16	0.169 ± 0.021	3.7 ± 0.5	3	calegones
VH -Had-enriched- $p_{\rm T}^{4\ell}$ -High	0.64 ± 0.09	0.029 ± 0.008	0.0182 ± 0.0022	0.69 ± 0.09	0	No events in 2 VH-
VH-Lep-enriched	0.318 ± 0.019	0.049 ± 0.008	0.0137 ± 0.0019	0.380 ± 0.020	0	and ttH-enriched
ttH-enriched	0.39 ± 0.04	0.014 ± 0.006	0.07 ± 0.04	0.47 ± 0.05	0	
Total	54 ± 4	19.7 ± 1.5	3.9 ± 0.5	77 ± 4	95	categories

ATLAS 1D results

- Excess of events results on no-zero central values of BSM couplings
 A second seco
 - $_{\circ}~$ esp. when $\kappa_{_{SM}}$ fixed at 1

95%CL

BSM coupling	Fit	Expected	Observed	Best-fit	Best-fit	Deviation
$\kappa_{ m BSM}$	$\operatorname{configuration}$	conf. inter.	conf. inter.	$\hat{\kappa}_{ m BSM}$	$\hat{\kappa}_{ m SM}$	from SM
κ_{Agg}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} = 1)$	[-0.47, 0.47]	[-0.68, 0.68]	± 0.43	-	1.8σ
κ_{HVV}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} = 1)$	[-2.9, 3.2]	[0.8, 4.5]	2.9	-	2.3σ
κ_{HVV}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} \text{ free})$	[-3.1, 4.0]	[-0.6, 4.2]	2.2	1.2	1.7σ
κ_{AVV}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} = 1)$	[-3.5, 3.5]	[-5.2, 5.2]	± 2.9	-	1.4σ
κ_{AVV}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} \text{ free})$	[-4.0, 4.0]	[-4.4, 4.4]	± 1.5	1.2	0.5σ

HEP seminar, 3. 4. 2020

ATLAS Collaboration, JHEP 03 (2018) 095 ³⁸

ATLAS 2D results

- $_{\odot}~$ The best-fit values of $\kappa_{_{HVV}}$ similar to the ones for 1D-fit, while one of $\kappa_{_{AVV}}$ are closer to SM prediction
- $\odot~$ Overall agreement with SM within 2σ

CP via VBF H → ττ (ATLAS)

- Parametrisation eff. Lagrangian used in measurement VBF $H \rightarrow \tau\tau$: $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \tilde{g}_{HAA}H\tilde{A}_{\mu\nu}A^{\mu\nu} + \tilde{g}_{HAZ}H\tilde{A}_{\mu\nu}Z^{\mu\nu} + \tilde{g}_{HZZ}H\tilde{Z}_{\mu\nu}Z^{\mu\nu} + \tilde{g}_{HWW}H\tilde{W}^{+}_{\mu\nu}W^{-\mu\nu}$ which can be expressed using two dimensionless couplings: $\tilde{g}_{HAA} = \frac{g}{2m_W}(\tilde{d}\sin^2\theta_W + \tilde{d}_B\cos^2\theta_W)$ $\tilde{g}_{HAZ} = \frac{g}{2m_W}\sin 2\theta_W(\tilde{d} - \tilde{d}_B)$ $\tilde{g}_{HZZ} = \frac{g}{2m_W}(\tilde{d}\cos^2\theta_W + \tilde{d}_B\sin^2\theta_W)$ $\tilde{g}_{HWW} = \frac{g}{m_W}\tilde{d},$

CP via VBF $H \rightarrow \tau\tau$: optimal obs.

$\mathcal{M} = \mathcal{M}_{SM} + \tilde{d} \cdot \mathcal{M}_{CP\text{-odd}}$ $|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + \tilde{d} \cdot 2\operatorname{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{CP\text{-odd}}) + \tilde{d}^2 \cdot |\mathcal{M}_{CP\text{-odd}}|^2$

=> Optimal observable

$$OO = \frac{2 \operatorname{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd})}{\left|\mathcal{M}_{SM}\right|^2}$$

- full phase-space information in 1d observable for small d[~]
- \sim <OO> \neq 0: sign of CPV (neglecting rescattering effects)
- OO computed using ME from HAWK using
 - 4-momenta of 2 tagging jets
 - 4-momentum of H, i.e. ττ system (estimated with MMC)

CP via VBF $H \rightarrow \tau\tau$: OO distributions

• All possible decay modes used: $\ell\ell$ SF, $\ell\ell$ DF, $\ell\tau_{h}$, $\tau_{h}\tau_{h}$

HEP seminar, 3.4.2020

- VBF events selected with dedicated BDTs (on top of loose preselection)
- Observed mean values of OO consistent with SM (<OO>=0)

=> no evidence of CPV

Channel	$\langle {\rm Optimal~Observable} \rangle$
$\tau_{\rm lep} \tau_{\rm lep} {\rm SF}$	-0.54 ± 0.72
$ au_{ m lep} au_{ m lep}~{ m DF}$	0.71 ± 0.81
$ au_{ m lep} au_{ m had}$	0.74 ± 0.78
$ au_{ m had} au_{ m had}$	-1.13 ± 0.65
Combined	-0.19 ± 0.37

42

ATLAS Collaboration, ATLAS-CONF-2019-050

CP via VBF $H \rightarrow \tau\tau$: results

 Value of d[~] obtained with maxlikelihood (simultaneously in 4 final states and 7 control regions)

	expected $(\mu = 1)$	observed
68% CL	[-0.035, 0.033]	[-0.090, 0.035]
95% CL	[-0.21, 0.15]	-

- Best fit, d~= -0.01 with signal strength µ = 0.73
 Consistent with SM => no evidence of CPV
 - Observed looser than expected due to event yields smaller than expected (µ=0.73)

• Comparing expressions for eff. Lagrangians one gets $|\gamma|^2$

$$f_3 = \frac{|d|}{\frac{\sigma_3}{\sigma_1} + |\widetilde{d}|^2}$$
 and $\cos(\varphi_3) = sgn(\widetilde{d})$
and

$$\widetilde{d} = \frac{V}{4\Lambda} \widehat{\kappa}_{AVV} \equiv \frac{V}{4\Lambda} \frac{\kappa_{AVV}}{\kappa_{SM}}$$

This allows to compare sensitivity of different measurements, e.g. expressed as sgn f_3 (some differences in assumption and meaning of exp.)

Process	Exp. 68% CL (10 ⁻³)	Exp. 95% CL (10 ⁻³)	Obs. 68% CL (10 ⁻³)	Obs. 95% CL (10 ⁻³)
Η → 4ℓ+ ττ (CMS)	[-0.23, 0.23]	[-1.2, 1.2]	[-0.27, 0.27]	[-92, 14]
H → 4ℓ (ATLAS)	[-3.5, 3.5]	[-18.3, 18.3]	not provided	[-8.2, 8.2]
Η → ττ (ATLAS)	[-0.19, 0.017]	[-6.9, 6.7]	[-1.27, 0.19]	not excluded

Testing Yukawa coupling with H → ττ at HL-LHC with ATLAS

CP in H $\rightarrow \tau\tau$ decay: observables

- Directions of the tau hadronic decay products maintain strong correlation to the tau spin direction several options to exploit:
 - Correlation between planes defined by charged and neutral pions in $\tau^{\pm} \to \rho^{\pm} \nu \to \pi^{\pm} \pi^{0} \nu
 decay$
 - Br~25%
 - Quantities measured with reasonable precision
 - Used in the following study
 - Correlation between planes with fully reconstructedy $\tau^{\pm} \rightarrow a_{1}^{\pm} \nu \rightarrow \pi^{\pm} \pi^{\pm} \nu$ decay
 - Br~10%
 - Usage of PV, SV and kin. fit
 - Correlation between planes with charged particle and its IP (1-prong decays incl. leptonic ones)
 - High resolution of PV and IP required
 - Combinations of planes defined in above ways
 A second second

- Correlation between planes defined by charged and neutral pions in $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu
 decay$
 - Br~25% (=> ~6% of $H \to \tau \tau$)
 - Quantities measured with reasonable precision

CP in H $\rightarrow \tau\tau$ decay: extrapolation

- $3 \, \mathrm{J}$
- Our Section Prospect study based on the H → $\tau\tau$ cross-section measurements with 36.1/fb at 13 TeV data (ATLAS: Phys. Rev. D 99 (2019), 072001)
 - Signal events produced at 14 TeV with smeared π^{\pm} and π^{0} resolutions
 - Background assumed to be flat
 - Proven for irreducible $Z \to \tau \tau$
 - No reason for correlations in background with fakes taus
 - Same event selection as in 13TeV analysis
 - Events yields extrapolated from 13TeV
 - Required both taus with reconstructed π^{\pm} and π^{0} , and 100 < m_{_{\rm III}} < 140 GeV
 - yields scaled by 3000/36.1 = 83.1 and the x-sec $13 \rightarrow 14 \mbox{ TeV}$

CP in H $\rightarrow \tau\tau$ decay: results

- Mixing angle can be measured at 68% CL with statistical precision of:
 - $\circ~18^{\circ}$ with nominal (expected) π° resolution
 - 33° with π° resolution twice worse than nominal one
- Pure CP-odd coupling can be excluded at 95% CL even with π⁰ resolution 1.5 time worse than nominal one

HEP seminar, 3. 4. 2020