
Ilija Vukotic
University of Chicago

DOMA Access 2020/04/21

Virtual Placement
for cache usage optimization

Caches
● Reduce WAN traffic
● Reduce latency / increase CPU eff.
● Cost less to run

○ In terms of person-power
○ In $/TB

Issues:

● They work only if files are accessed multiple times. Cache efficiency
expressed as cache-hit-rate. Unlike Netflix, HEP data is not very frequently
reused.

● Current job scheduling of jobs “to where the data is” does not work for caches
as caches would never get populated.

● We still use multiple protocols to move data around.

2

Caches - continued

Several ways to deploy them:

● Consider WN local disk as a tiny cache. We had that system (pcache) in use
but now had to be reimplemented. A lot of testing needed. Expected cache hit
rate 15%. Still valuable as it costs nothing.

● Small site (in terms of CPU) without pledged storage, that is “far” from a large
storage site (in terms of distance and/or throughput). Relatively easy to set up.
Hard to keep running. Making these sites run only EVGEN is simpler solution.

● Large site/HPC without pledged storage. Can not rely on one (closest) site for
all of its data. Need a high cache hit rate to reduce WAN need and still have
high CPU eff.

3

VP - Virtual Placement

1. On registration in RUCIO every dataset gets assigned to N sites in the same cloud.

2. Assignment is done randomly where each sites probability to get the dataset is proportional to

fraction of CPUs that the site contributes to ATLAS.

3. Datasets are not actually copied at any of these N sites but only exist in the “lake”.

4. Panda would assign job that needs as an input this dataset to the first site from these 3. In case site

is in outage it would get assigned to the second site from the list. Once job is there it would access

the data through the cache.

This way we get:
● Very high cache hit rate

● We could use a large fraction of the existing storage as caches

● Reliability

● Adding/removing site would be easily done from a central location

● Less stress on FTS, fewer RUCIO rules (neither needed at xcache-only sites)

4

VP in practice

5

DSX - primary copy
DSX - virtual copy fully or partially cached data
DSX - virtual copy - not there at all until needed

Regular site

DS4, DS5,... Lake SITE 1

DS1, DS2, DS3,
DS6, DS5...

Lake SITE 2

DS1, DS2,...

FTS
RUCIO

FTSRUCIO

FTSRUCIO

Cache only site

DS6, DS1,...

DS4, DS5,...
xrootd

xrootd

xrootd

WNs

WNs

WNs

● Lake is still not there. We use all the sites in its place.
● It has to interoperate with current DDM and WFMS.

Site
PQ

Site
PQ

VP service

Parts:

● an engine doing assignments
● REDIS DB to memorize Virtual

Placements
● REST API to configure, access

placements.

Currently external to RUCIO.

Once proven useful, should become a
part of RUCIO.

 6

AGIS

RUCIO

JEDI

VP service

Redis

Site
PQ
Pilot
Rucio
mover

Pilot
Rucio
mover

Pilot
Rucio
mover

IRL Tests - configuration

XCache Original setup

● MWT2 16 x 12TB (JBODs)
● AGLT2 8 x 8TB (JBODs)
● Prague 2x44TB, 2x37TB, 2x19TB (RAIDs)
● BNL 60TB (NVMe)

VP settings:

● 2k/250k datasets to MWT2 and AGLT2
● 2k/250k to Prague.
● 2k/250k to BNL.

7

XCache NEW setup

● MWT2 16 x 12TB (JBODs)
● AGLT2 12 x 8TB (JBODs)
● Prague 2x44TB, 2x37TB, 2x19TB (JBODs)
● LRZ-LMU 20 (JBODs)

VP settings:

● 2k/250k datasets to all

Issues

● XCache stability ✅
● Bad origins ☑
● Which queue can get job that can use VP replicas ✅
● Copy-to-scratch handling ✅
● Unavailability of data in origin DDM ✅
● Sites not having xroot as a primary protocol for WAN reads ☑

8

Does VP service work? Yes!

VP service has been instrumented so it reports all requests and replies to
ES@UChicago.

9

● ~3.5 Hz requests
● A lot of repeated requests in avg. 7.3

times per DS Assignments
probabilities are as
expected

Repeated
requests

Initial
requests

Does scheduling for VP works?

We collect rucio traces.

Look for paths (url:root*root\:*).

Week ago we discovered bug
that made only one file access
per job visible.

These numbers are very under
reported, but ratios are correct.

10

Direct access.

Copy 2 scratch

VP sources

11

Sources are mainly large sites

Need serious development to
assure best copy (closest) is
returned.

XCache reports

MWT2 in last 3 months

Had 3 full cleanups.

12

71.4% cache hit probability.

65.5% data delivered in following
accesses.

59.6% data delivered from xcache
disk.

MWT2 - rate and sparseness

13

In average ~170k files in cache.
Fill factor of the files in cache is ~72%.
Part of the jobs do copy2scratch so these have ~100% fill.

Subsequent accesses add more
data to cache.

From memory

From disk

From disk
prefetched

Cache comparisons

14

last 30 days

● VP caches can be very efficient.
● AGLT2 cache shows bad situation: small disk, low number of jobs using it, copy2scratch.
● Non-VP caches show low utilization and low efficiency.

LRZ-LMU xcache

15

● Big site with well supported xcache
● Worked in direct mode until 7 days ago.
● Now starting from scratch in VP mode.
● Before

○ ~30% cache hit rate (files & data)

● Now
○ 50% file cache hit rate
○ 75% data delivered from cache

Future
● XCache developments

○ Update to version that supports CRC once it’s ready
○ Fix for ROOT TChain:Add

● Origin fixes - constant load.
● VP

○ Find and understand all the things that change load on the caches.
○ A large site served only via xcache
○ Deploy in front of an HPC

● Far future
○ Multi node xcache support
○ Moving VPservice into Rucio
○ Adaptive caching instead of LRU currently used

16

Adaptive caching

● By “pinning” datasets to caches (VP) we solve most of the low cache hit rate
problem. That can get us to ~80% cache hit rate with the Least Recently Used
cleanup model (LRU).

● If we could gain 5% by changing caching model, that would reduce WAN
traffic by 25%, which is a lot.

● All kinds of schemes proposed, some even tried.
● Most popular idea is “we know what we are using most”.

○ We don’t really know, up to now all assumptions proved wrong.
○ What is popular changes while hard coded rules tend to stick.
○ Would require continual effort on analysis and re-tunning. Impossible to do for all the

sites/panda queues.

● Naive approaches trying to detect “popular” datasets failed.

Why do we need it now?

● For now, we really don’t… first we need to:
○ get xcaches integrated in regular operations
○ gain operational experience
○ characterize performance and effects on job eff, wan throughput etc.

● But we need to start making it now:
○ RL is not something you do in a week
○ Training takes time
○ Integrating it into xcache would take time

● Can be useful for other DDM operations eg. select files to
move to tape.

Reinforcement learning

An actor gets trained once or online, by an environment that
gives a reward for “good” actions.

Used for everything from Chess, Go, to Hide & seek.

Specially useful for situations where not all info available and
multiple actors influence the system simultaneously, thus
requiring cooperation (eg. multi-level cache actors, Rod and
Ivan).

https://youtu.be/Lu56xVlZ40M?t=24

Plan
● Get data - already in ES, extract it. ✅
● Preprocess data (tokenization of filenames, dataset names too). ✅
● Create environment - basing it on OpenAI gym environment. Two

environments:
○ discrete action (cache/not cache) ✅
○ Continuous action (predicting probability that a file is already in cache/

should be cached)
● Train different actors

○ Deep-Q network (DQN) or Dueling DQN for discrete action env.

✅

○ Actor-Critic model for continuous action env
● Compare them with LRU

Appendix

21

VP - expectations

VP to two sites of same cloud
One Data Lake (has all the data)
Each cloud has XCache (100TB/2k cores)
Each site has XCache (100TB/1k cores)

Resources would be fully used. TTC would be the same as
now. Cache would deliver 80% of data. Throughput at
caches would be reasonable.

22

FB way
Their problem is much bigger: much more data, popularity changing much faster, it has to deliver data in
seconds, geographical distribution of producers/consumers much more spread.

Solution: network of 3 layers of caches. Each cache in each layer is redundant. On each file access caches
in each layer repopulated (if needed).

https://scontent-ort2-2.xx.fbcdn.net/v/t1.0-9/89280660_3432061820144419_3933167136544915456_n.jpg?_nc_cat=104&_nc_sid=110474&_nc_oc=A
Qlduvrj3RFheT3n1eJs-Ed6Oh9JjuWDFKhEtG27H4HGP-YiR7QeUrvuGCZ053QxPJg&_nc_ht=scontent-ort2-2.xx&oh=c73fbdec0bff0383228d42cdc8e
ff2ab&oe=5E8E4F18

Path to the file encodes full chain of caches so no searching for a file is done at any place.
23

https://scontent-ort2-2.xx.fbcdn.net/v/t1.0-9/89280660_3432061820144419_3933167136544915456_n.jpg?_nc_cat=104&_nc_sid=110474&_nc_oc=AQlduvrj3RFheT3n1eJs-Ed6Oh9JjuWDFKhEtG27H4HGP-YiR7QeUrvuGCZ053QxPJg&_nc_ht=scontent-ort2-2.xx&oh=c73fbdec0bff0383228d42cdc8eff2ab&oe=5E8E4F18
https://scontent-ort2-2.xx.fbcdn.net/v/t1.0-9/89280660_3432061820144419_3933167136544915456_n.jpg?_nc_cat=104&_nc_sid=110474&_nc_oc=AQlduvrj3RFheT3n1eJs-Ed6Oh9JjuWDFKhEtG27H4HGP-YiR7QeUrvuGCZ053QxPJg&_nc_ht=scontent-ort2-2.xx&oh=c73fbdec0bff0383228d42cdc8eff2ab&oe=5E8E4F18
https://scontent-ort2-2.xx.fbcdn.net/v/t1.0-9/89280660_3432061820144419_3933167136544915456_n.jpg?_nc_cat=104&_nc_sid=110474&_nc_oc=AQlduvrj3RFheT3n1eJs-Ed6Oh9JjuWDFKhEtG27H4HGP-YiR7QeUrvuGCZ053QxPJg&_nc_ht=scontent-ort2-2.xx&oh=c73fbdec0bff0383228d42cdc8eff2ab&oe=5E8E4F18

Doing it FB way

We have no infrastructure for any of it:

● No single origin / Data Lake
○ Have to use all of the current storages that have xroot protocol enabled.

● No control over cache deployments
○ Using SLATE to get most of the control needed

● Rucio does not know anything about caches
○ Adding a separate service to provide functionality needed (VP)

● No multi-level caches
○ Still too early for that.

Has to play nice with the current system.

Political headwinds...

24

Implicit assumptions:

● XCache delivers stability and performance required.
● XCache is centrally managed.
● Sites keep their xrootd endpoints up and running.

What is it actually ?

VP service is a Node.js server deployed in k8s at CERN.

It has a bunch of functions but the most important is:

Whatever you give it as scope and name it will return
something like:
● [‘other’], - means no VP replicas.
● [DDM1], - only one VP replica.
● [DDM1, DDM2, DDM3] - two “spare” replicas will be in the same cloud.

25

curl -XGET vpservice.cern.ch/ds/3/<scope:name>

What it does?

● It connects to its own Redis DB
and checks if there is a key
<scope:name>.

● If it does, it returns
corresponding value.

● If it does not:
○ it throws random number to

decide if and where to place a
virtual replica

○ puts that decision in Redis DB

26

REDIS

RUCIO
REST
requests

VP service
REST API

Fi
lle

r

Fi
lle

r

Fi
lle

r

Unassignedds:sites

How a job knows where to get data?

Pilot uses Rucio mover to get data.

Rucio mover checks all the replicas and if a replica is remote
and site has xrootd internal proxy defined, it constructs
correct path which looks like:

root://xcache.xxx.org//root://origin//path/file

It works correctly in both copy2scratch and direct access
modes.

27

