

ATLAS + CMS SEARCHES BEYOND INCLUSIVE RESONANCES IN LEPTONIC FINAL STATES

LHCP 2021, TeV-scale BSM, June 7, 2021

Tadej Novak, DESY on behalf of the ATLAS and CMS collaborations

INTRODUCTION & OUTLINE

- There are many searches performed in leptonic final states beyond the ones with inclusive resonances.
- Covered in this talk:
 - Processes with with a lepton and missing transverse momentum
 - Non-resonant processes in dilepton events
 - Lepton flavour violation searches
 - Multilepton processes and model independent searches
- The following topics will be covered later this week:
 - Resonances and heavy mediators (<u>Joint BSM session, Wednesday</u>)
 - SUSY (<u>TeV-scale BSM: SUSY, Tuesday</u>)
 - Leptoquarks and vector-like quarks (<u>TeV-scale BSM: Third generation and flavour, Thursday</u>)

PROCESSES WITH ONE LIGHT LEPTON AND ETMISS

CMS-PAS-EXO-19-017

• The tails of transverse mass M_T in single lepton W+jets events with high missing transverse momentum can also be used for non-resonant searches.

$$M_{\rm T} = \sqrt{2p_{\rm T}^{\ell}E_{\rm T}^{\rm miss}\left(1 - cos[\Delta\phi(\ell, E_{\rm T})]\right)}$$

- Effective field theory (EFT) interpretations quantify potential deviations from SM expectations through the oblique electroweak W parameter, as a correction to the propagator $qq \rightarrow W \rightarrow lv$, Phys. Rev. D 46, 381.
- Selection:
 - high transverse momentum electrons $(p_T > 240 \text{ GeV})$ or muons $(p_T > 53 \text{ GeV})$
 - E_T^{miss} with p_T/E_T^{miss} between 0.4 and 1.5 and $\Delta\phi(p_T, E_T^{miss}) > 2.5$
- Fit result using 2017 and 2018 data:

$$W = -12^{+5}_{-6} \times 10^{-5}$$

PROCESSES WITH TAU-LEPTON AND ETMISS

ATLAS-CONF-2021-025

- Events with τ -leptons in the final state yield wide resonances due to secondary (hadronic) t decays.
- Looking for Sequential Standard Model (SSM) W' boson, <u>Z. Phys. C 45 (1989) 109</u>.
- Misidentification probability of jets as tau candidates propagated from control regions as transfer factors.
- W' masses excluded up to 5.0 TeV.
- Model-independent limits set on signal yields above certain transverse mass thresholds, $m_{\mathsf{T}}^{\mathsf{thresh}}$.

6000

BACKGROUND MODELLING OF DILEPTON EVENTS

Before searching for processes in dilepton events, backgrounds need to be modelled well.

ATLAS-EXOT-2019-16

- m_{ll} distribution is fit from data by a parametric background function in a low-mass control region.
- Extrapolated to single-bin signal regions.
- Fit parameters b, c, p_i.

$$f_{b}(m_{\ell\ell}) = f_{BW,Z}(m_{\ell\ell}) \cdot (1 - x^{c})^{b} \cdot x^{\sum_{i=0}^{3} p_{i} \log(x)^{i}}$$

CMS-EXO-19-019

- Dominant background: Drell-Yan process, estimated from simulation.
- Jets misidentified as electrons are estimated from data.
- Combined background shape normalised to data around the Z boson mass.

LEPTON FLAVOUR UNIVERSALITY VIOLATIONS IN DILEPTON EVENTS

- Lepton flavour universality violations, other flavour anomalies, would indicate a deviation from unity of the ratio of the dimuon to dielectron differential cross section, J. Phys. G: Nucl. Part. Phys. 46 023001.
- Mass distributions in data are unfolded after subtracting all backgrounds except for DY.
- Normalised to 1 in the range 200–400 GeV to correct efficiencies between e/μ .
- Corrected with simulated DY events.
- Good agreement up to 1.5 TeV.
- One-sided p-values of 0.067 and 0.185.

$$R_{\mu^{+}\mu^{-}/e^{+}e^{-}} = \frac{d\sigma(q\overline{q} \to \mu^{+}\mu^{-})/dm_{\ell\ell}}{d\sigma(q\overline{q} \to e^{+}e^{-})/dm_{\ell\ell}}$$

FOUR-FERMION CONTACT INTERACTION IN DILEPTON EVENTS (1)

- Quarks and leptons may be composite with at least one common constituent → effective four-fermion contact interaction at scale Λ, Rev. Mod. Phys. 56, 579, Phys. Rev. Lett. 50, 811.
- CMS studied the angle θ^* of the outgoing negatively charged lepton with respect to the z axis in the Collins–Soper frame (2 bins). $p^{\pm} = \frac{1}{\sqrt{2}}(E \pm p_z) \quad \cos \theta^* = \frac{p_z(\ell^+\ell^-)}{|p_z(\ell^+\ell^-)|} \frac{2(p_1^+p_2^- p_1^-p_2^+)}{m(\ell^+\ell^-)^2 + p_T(\ell^+\ell^-)^2}$

- Lower limits on the contact interaction scale Λ are set:
 - ATLAS: from 22.3 to 35.8 TeV
 - CMS: from 23.9 to 36.4 TeV
- Same regions used to search for extra dimensions in ADD models,

ATL-PHYS-PUB-2021-021, CMS-EXO-19-019.

CMS-EXO-19-019

FOUR-FERMION CONTACT INTERACTION IN DILEPTON EVENTS (2)

ATLAS-EXOT-2018-16

- To explain the asymmetries measured in the *B*-meson decays, the *bsll* interaction would have to be different between electrons and muons $\rightarrow bsll$ contact interaction with scale Λ and coupling g_* , JHEP 08 (2018) 056, Eur. Phys. J. C 79 (2019) 714, Eur. Phys. J. C 77 (2017) 548.
- 4 categories: $e^+e^-/\mu^+\mu^-$ with 0 or 1 b-jet.
- Signal regions (SR) with lower bounds on m_{ll}^{min} starting at 400 GeV.

- Top and multijet backgrounds estimated from simulation, extrapolated from a 2b region using parametric functions.
- Z+jets fitted with for 130 < m_{ll} < 250 GeV.
- Largest observed local significance 2.6 σ .
- Lower limits: from 1.8 to 2.4 TeV.

LEPTON FLAVOUR VIOLATING Z-BOSON DECAYS (1)

- The number of leptons of each family is conserved in weak interactions, and violation of this assumption is known as lepton flavour violation (LFV).
- One in 10^{54} Z bosons would decay into a muon and a τ -lepton via neutrino mixing, one in 10^5 in presence of heavy neutrinos, Phys. Rev. D 63, 053004.
- Searches performed in ATLAS with both leptonically and hadronically decaying τ-leptons (accepted in Nature Physics).
- Using multiple neural network classifiers (one per bkg.) and optimising their combination for the best sensitivity.

combined NN output =
$$1 - \sqrt{\frac{\sum_{i} w_{i} \times (1 - NN_{i})}{\sum_{i} w_{i}}}$$

ATLAS-EXOT-2020-28 ATLAS-EXOT-2018-36

LEPTON FLAVOUR VIOLATING Z-BOSON DECAYS (2)

• 8 signal regions:

- τ_{lep} : $e\tau_{\text{lep}}$ and $\mu\tau_{\text{lep}}$ split by $p_T(l_2) < 20$ (25) GeV.
- τ_{had} : $e\tau_{had}$ and $\mu\tau_{had}$ split by the number of tracks τ -leptons decay into (1P or 3P).
- Signal region fit variable combined NN output.
- Z control region fit variable $m_{coll}(l_1, l_2)$ = invariant mass of l_1 – l_2 –2v system where neutrinos are assumed collinear with l_2 .

Fitted parameters:

- τ_{lep} : yields of signal, $Z \rightarrow \tau \tau$, top quarks, and misidentified leptons.
- τ_{had} : yields of signal, $Z \rightarrow \tau \tau$, misidentified τ -jets separately for 1P or 3P τ_{had} .
- Combined limit on $B(Z \rightarrow e\tau)$ set to 5×10^{-6} and on $B(Z \rightarrow \mu\tau)$ to 6.5×10^{-6} .

MULTILEPTON FINAL STATES: TYPE-III SEESAW HEAVY LEPTONS (1)

ATLAS-CONF-2021-023 ATLAS-EXOT-2018-33

- The seesaw mechanism: explaining the relative smallness of the neutrino masses.
- Minimal type-III seesaw an extra fermionic triplet: one neutral (N₀) and two oppositely-charged leptons (L+, L-), Phys. C Particles and Fields (1989) 44, 441, Eur. Phys. J. C (2012) 72, 1899.
- Decays into a SM lepton and a W, Z
 or H boson, the highest branching ratio into W.
- Probed a few possible lepton/jet multiplicities:
 - two light leptons, at least two jets
 - three light leptons, zero or one jet
 - three light leptons, at least two jets
 - four light leptons, any number of jets

MULTILEPTON FINAL STATES: TYPE-III SEESAW HEAVY LEPTONS (2)

- 11 signal regions (SR) in total:
 - 6 dilepton SRs: all lepton flavour and charge combinations
 - 3 trilepton SRs: on-Z and off-Z with 2+ jets, inclusive with 0-1 jets
 - 2 four lepton SRs: sum of lepton charge 0 or 2
- High E_Tmiss with good reconstruction significance required — neutrinos.
- Demanding background estimation: large fraction of non-prompt and fake leptons, leptons with misreconstructed charge.
- Heavy leptons with masses below 910 GeV are excluded.

dilepton OS eµ

trilepton on-*Z*, 2+ jets

four lepton, charge = 0

MODEL INDEPENDENT SEARCHES

- What if LHC data can not be described with our preferred model? Can a more generalised search be performed?
- ATLAS: 22 single-bin signal regions
 - Measured number of signal events $\hat{N}_{\rm sig}$ as difference between the estimated background and the data.
- CMS: about 60 classes
 - Search for regions: taking the ones with smallest p-value.
 - Global overview: observed deviations are compared with pseudo-experiments using the SM-only hypothesis.

CONCLUSIONS

DESY.

- ATLAS and CMS performed many non-resonant searches with leptons in the final state.
- No significant excess from the Standard Model has been observed.
- Many searches of full Run 2 data still being completed.
- Run 3 just around the corner.

ATLAS Publications

CMS Publications

FOUR-FERMION CONTACT INTERACTION — ALL LIMITS (1)

FOUR-FERMION CONTACT INTERACTION — ALL LIMITS (2)

ATLAS-EXOT-2018-16

ADD Models with Extra Dimensions in Dilepton Events

ATL-PHYS-PUB-2021-021

- CMS-EXO-19-019 Large difference between the energy scales of electroweak symmetry breaking and gravitation \rightarrow gravitational force could propagate into additional dimensions; models by Arkani-Hamed, Dimopoulos, and Dvali (ADD), Phys. Lett. B 429 (1998) 263.
- ATLAS recently performed reinterpretation of the contact interaction search.
- Dedicated CMS search.
- Lower limits on the model parameters in the different ADD conventions are set:
 - Giudice-Rattazzi-Wells
 - Hewett
 - Han-Lykken-Zhang

LEPTON FLAVOUR VIOLATING Z-BOSON LIMITS

ATLAS-EXOT-2020-28 ATLAS-EXOT-2018-36

	Observed (expected) upper limit on $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]		
Final state, polarization assumption	e au	μau	
$\ell \tau_{\text{had}} \text{ Run 1 + Run 2, unpolarized } \tau$	8.1 (8.1)	9.5 (6.1)	
$\ell \tau_{\rm had}$ Run 2, left-handed τ	8.2 (8.6)	9.5 (6.7)	
$\ell \tau_{\rm had}$ Run 2, right-handed τ	7.8 (7.6)	10 (5.8)	
$\ell au_{\ell'}$ Run 2, unpolarized $ au$	7.0 (8.9)	7.2 (10)	
$\ell au_{\ell'}$ Run 2, left-handed $ au$	5.9 (7.5)	5.7 (8.5)	
$\ell au_{\ell'}$ Run 2, right-handed $ au$	8.4 (11)	9.2 (13)	
Combined $\ell\tau$ Run 1 + Run 2, unpolarized	5.0 (6.0)	6.5 (5.3)	
Combined $\ell \tau$ Run 2, left-handed τ	4.5 (5.7)	5.6 (5.3)	
Combined $\ell \tau$ Run 2, right-handed τ	5.4 (6.2)	7.7 (5.3)	

MODEL INDEPENDENT SEARCH IN ATLAS

- What if LHC data can not be described with out preferred model? Can a more generalised search be performed?
- Very important to estimate background contributions with high precision.
- 22 single-bin signal regions categorised by
 - lepton count (3 or 4 leptons)
 - presence of an on-Z lepton pair
 - magnitude of invariant mass of all leptons
 - E_Tmiss lower or higher than 50 GeV
- Measured number of signal events \hat{N}_{sig} is defined as the difference between the estimated background and the data.
- No significant deviations observed.

ATLAS-CONF-2021-011

significance $Z = \hat{N}_{\text{sig}}/\Delta \hat{N}_{\text{sig}}$

SR	0-200 GeV	200-400 GeV	400-600 GeV	>600 GeV
3ℓ , On-Z, $E_{\rm T}^{\rm miss} < 50 \text{ GeV}$	-0.2	-0.7	-0.6	-2.5
3ℓ , On-Z, $E_{\rm T}^{\rm miss} > 50 \text{ GeV}$	-1.0	-0.5	-0.4	-1.6
3ℓ , Off-Z, $E_{\rm T}^{\rm miss} < 50 {\rm GeV}$	-0.1	0.3	-2.7	0.1
3ℓ , Off-Z, $E_{\rm T}^{\rm miss} > 50 \text{ GeV}$	-0.2	0.5	0.1	-1.2
SR	0-400 GeV		>400 GeV	
4ℓ , On-Z, $E_{\rm T}^{\rm miss} < 50 \; {\rm GeV}$	1.0		0.4	
4ℓ , On-Z, $E_{\rm T}^{\rm miss} > 50 \text{ GeV}$	1.8		0.1	
4ℓ, Off-Z	0.1		-1.3	

MODEL INDEPENDENT SEARCH IN CMS

2µ+1jet+X

1e+2µ+1jet+X

Inclusive

event class

Kinematic distributions of interest:

CMS-EXO-19-008

1e+1µ+1jet+X

1e+2µ+X

- scalar sum of p_T of all objects (3+ bins)
- invariant/transverse mass of all objects (1+ bins)
- missing transverse momentum (3+ bins)
- Search for regions: taking the ones with smallest *p*-value.
- Global overview: observed deviations are compared with pseudo-experiments using the SM-only hypothesis.
- No significant deviations found in ~60 classes.

DESY. TADEJ NOVAK · SEARCHES IN LEPTONIC FINAL STATES · LHCP 2021