

ATLAS + CMS SEARCHES BEYOND INCLUSIVE Resonances in Leptonic Final States

LHCP 2021, TeV-scale BSM, June 7, 2021

Tadej Novak, DESY
on behalf of the ATLAS and CMS collaborations

- There are many searches performed in leptonic final states beyond the ones with inclusive resonances.
- Covered in this talk:
- Processes with with a lepton and missing transverse momentum
- Non-resonant processes in dilepton events
- Lepton flavour violation searches
- Multilepton processes and model independent searches
- The following topics will be covered later this week:
- Resonances and heavy mediators (Joint BSM session, Wednesday)
- SUSY (TeV-scale BSM: SUSY, Tuesday)
- Leptoquarks and vector-like quarks (TeV-scale BSM: Third generation and flavour, Thursday)
- The tails of transverse mass M_{T} in single lepton $W+j e t s$ events with high missing transverse momentum can also be used for non-resonant searches.

$$
M_{\mathrm{T}}=\sqrt{2 p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}}\left(1-\cos \left[\Delta \phi\left(\ell, E_{\mathrm{T}}\right)\right]\right)}
$$

- Effective field theory (EFT) interpretations quantify potential deviations from SM expectations through the oblique electroweak W parameter, as a correction to the propagator $q q \rightarrow W \rightarrow l v$, Phys. Rev. $D 46,381$.
- Selection:
- high transverse momentum electrons ($p_{T}>240 \mathrm{GeV}$) or muons ($p_{T}>53 \mathrm{GeV}$)
- E_{T} miss with p_{T} / E_{T} miss between 0.4 and 1.5 and $\Delta \phi\left(p_{T}, E_{T}{ }^{\text {miss }}\right)>2.5$
- Fit result using 2017 and 2018 data:

$$
W=-12_{-6}^{+5} \times 10^{-5}
$$

- Events with τ-leptons in the final state yield wide resonances due to secondary (hadronic) T decays.
- Looking for Sequential Standard Model (SSM) W' boson, z. Phys. C 45 (1989) 109.
- Misidentification probability of jets as tau candidates propagated from control regions as transfer factors.
- W' masses excluded up to 5.0 TeV.
- Model-independent limits set on signal yields above certain transverse mass thresholds, $m_{T}{ }^{\text {thresh }}$.

Background Modelling of Dilepton Events

Before searching for processes in dilepton events, backgrounds need to be modelled well.

ATLAS-EXOT-2019-16

- $m_{l l}$ distribution is fit from data by a parametric background function in a lowmass control region.
- Extrapolated to single-bin signal regions.
- Fit parameters b, c, pi.

$$
f_{\mathrm{b}}\left(m_{\ell \ell}\right)=f_{\mathrm{BW}, Z}\left(m_{\ell \ell}\right) \cdot\left(1-x^{c}\right)^{b} \cdot x^{\sum_{i=0}^{3} p_{i} \log (x)^{i}}
$$

DESY.

CMS-EXO-19-019

- Dominant background: Drell-Yan process, estimated from simulation.
- Jets misidentified as electrons are estimated from data.
- Combined background shape normalised to data around the Z boson mass.

- Lepton flavour universality violations, other flavour anomalies, would indicate a deviation from unity of the ratio of the dimuon to dielectron differential cross section, L. Phys. G: Nucl. Part. Phys. 46023001.
- Mass distributions in data are unfolded after subtracting all backgrounds except for DY.
- Normalised to 1 in the range $200-400 \mathrm{GeV}$ to correct efficiencies between e / μ.
- Corrected with simulated DY events.
- Good agreement up to 1.5 TeV.
- One-sided p-values of 0.067 and 0.185 .

$$
R_{\mu^{+} \mu^{-} / \mathrm{e}^{+} \mathrm{e}^{-}}=\frac{\mathrm{d} \sigma\left(\mathrm{q} \overline{\mathrm{q}} \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{d} m_{\ell \ell}}{\mathrm{d} \sigma\left(\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right) / \mathrm{d} m_{\ell \ell}}
$$

CMS-EXO-19-019

CMS-EXO-19-019

- Quarks and leptons may be composite with at least one common constituent \rightarrow effective four-fermion contact interaction at scale Λ, Rev. Mod. Phys. 56, 579, Phys. Rev. Lett. 50, 811.
- CMS studied the angle θ^{*} of the outgoing negatively charged lepton with respect to the z axis in the Collins-Soper frame (2 bins).

$$
p^{ \pm}=\frac{1}{\sqrt{2}}\left(E \pm p_{z}\right) \quad \cos \theta^{*}=\frac{p_{z}\left(\ell^{+} \ell^{-}\right)}{\left|p_{z}\left(\ell^{+} \ell^{-}\right)\right|} \frac{2\left(p_{1}^{+} p_{2}^{-}-p_{1}^{-} p_{2}^{+}\right)}{m\left(\ell^{+} \ell^{-}\right) \sqrt{m\left(\ell^{+} \ell^{-}\right)^{2}+p_{\mathrm{T}}\left(\ell^{+} \ell^{-}\right)^{2}}}
$$

DESY.

- Lower limits on the contact interaction scale \wedge are set:
- ATLAS: from 22.3 to 35.8 TeV
- CMS: from 23.9 to 36.4 TeV
- Same regions used to search for extra dimensions in ADD models,
ATL-PHYS-PUB-2021-021, CMS-EXO-19-019.

Four-fermion Contact Interaction in Dilepton Events (2)

ATLAS-EXOT-2018-16

- To explain the asymmetries measured in the B-meson decays, the bsll interaction would have to be different between electrons and muons \rightarrow bsll contact interaction with scale \wedge and coupling g_{*}, IHEP 08 (2018) 056, Eur. Phys. J. C 79 (2019) 714, Eur. Phys. J. C 77 (2017) 548.
- 4 categories: $e^{+} e^{-} / \mu^{+} \mu^{-}$with 0 or $1 b$-jet.
- Signal regions (SR) with lower bounds on $m_{l l}{ }^{\text {min }}$ starting at 400 GeV .

- Top and multijet backgrounds estimated from simulation, extrapolated from a $2 b$ region using parametric functions.
- Z+jets fitted with for $130<m_{l l}<250 \mathrm{GeV}$.
- Largest observed local significance 2.6σ.
- Lower limits: from 1.8 to 2.4 TeV .

```
ATLAS-EXOT-2020-28
ATLAS-EXOT-2018-36
```

- The number of leptons of each family is conserved in weak interactions, and violation of this assumption is known as lepton flavour violation (LFV).
- One in $1054 Z$ bosons would decay into a muon and a τ lepton via neutrino mixing, one in 10^{5} in presence of heavy neutrinos, Phys. Rev. D 63, 053004.
- Searches performed in ATLAS with both leptonically and hadronically decaying t-leptons (accepted in Nature Physics).
- Using multiple neural network classifiers (one per bkg.) and optimising their combination for the best sensitivity.

$$
\text { combined NN output }=1-\sqrt{\frac{\sum_{i} w_{i} \times\left(1-N N_{i}\right)}{\sum_{i} w_{i}}}
$$

- 8 signal regions:
- $T_{\text {lep }}: ~ e T_{\text {lep }}$ and $\mu T_{\text {lep }}$ Split by $p_{T}\left(l_{2}\right)<20(25) \mathrm{GeV}$.
- Thad: $e T_{\text {had }}$ and $\mu T_{\text {had }}$ split by the number of tracks T-leptons decay into (1P or 3P).
- Signal region fit variable combined NN output.
- Z control region fit variable $m_{\text {coll }}\left(l_{1}, l_{2}\right)=$ invariant mass of $l_{1}-l_{2}-2 \mathrm{v}$ system where neutrinos are assumed collinear with l_{2}.
- Fitted parameters:
- $T_{\text {lep: }}$ yields of signal, $Z \rightarrow \pi$, top quarks, and misidentified leptons.
- $T_{\text {had }}$: yields of signal, $Z \rightarrow \pi$, misidentified T-jets separately for 1P or 3P Thad.
- Combined limit on $B(Z \rightarrow e T)$ set to 5×10^{-6} and on $B(Z \rightarrow \mu \tau)$ to 6.5×10^{-6}.

ATLAS-CONF-2021-023
ATLAS-EXOT-2018-33

- The seesaw mechanism: explaining the relative smallness of the neutrino masses.
- Minimal type-III seesaw - an extra fermionic triplet: one neutral (N^{0}) and two oppositely-charged leptons (L^{+}, L^{-}), Phys. C - Particles and Fields (1989) 44, 441, Eur. Phys. I. C (2012) 72, 1899.
- Decays into a SM lepton and a W, Z or H boson, the highest branching ratio into W.
- Probed a few possible lepton/jet multiplicities:
- two light leptons, at least two jets

- three light leptons, zero or one jet
- three light leptons, at least two jets
- four light leptons, any number of jets

- 11 signal regions (SR) in total:
- 6 dilepton SRs: all lepton flavour and charge combinations
- 3 trilepton SRs: on-Z and off-Z with 2+ jets, inclusive with 0-1 jets
- 2 four lepton SRs: sum of lepton charge 0 or 2
- High E_{T} miss with good reconstruction significance required - neutrinos.
- Demanding background estimation: large fraction of non-prompt and fake leptons, leptons with misreconstructed charge.
- Heavy leptons with masses below 910 GeV are excluded.

dilepton OS e μ

trilepton on-Z, 2+ jets

- What if LHC data can not be described with our preferred model? Can a more generalised search be performed?
- ATLAS: 22 single-bin signal regions
- Measured number of signal events $\hat{N}_{\text {sig }}$ as difference between the estimated background and the data.
- CMS: about 60 classes
- Search for regions: taking the ones with smallest p-value.
- Global overview: observed deviations are compared with pseudo-experiments using the SM-only hypothesis.

high energy type-III seesaw candidate
2 opposite-charge muons and 2 jets $H_{T}+E_{T}$ miss $=1511 \mathrm{GeV}$
- ATLAS and CMS performed many non-resonant searches with leptons in the final state.
- No significant excess from the Standard Model has been observed.
- Many searches of full Run 2 data still being completed.
- Run 3 just around the corner.

ATLAS
EXPERIMENT
Run: 310341
Event: 410259325
2016-10-10 16:22:12 CEST

Four-fermion Contact Interaction - All Limits (2)

ATLAS-EXOT-2018-16

- Large difference between the energy scales of electroweak symmetry breaking and gravitation \rightarrow gravitational force could propagate into additional dimensions; models by Arkani-Hamed, Dimopoulos, and Dvali (ADD), Phys. Lett. B 429 (1998) 263.
- ATLAS recently performed reinterpretation of the contact interaction search.
- Dedicated CMS search.
- Lower limits on the model parameters in the different ADD conventions are set:
- Giudice-Rattazzi-Wells
- Hewett

- Han-Lykken-Zhang

Final state, polarization assumption	Observed (expected) upper limit on $\mathcal{B}(\boldsymbol{Z} \rightarrow \boldsymbol{\ell} \boldsymbol{\tau})$ $\boldsymbol{e \tau}$	$\left.\boldsymbol{\mu} \times \mathbf{1 0}^{-\mathbf{6}}\right]$
$\ell \tau_{\text {had }}$ Run 1 + Run 2, unpolarized τ	$8.1(8.1)$	$9.5(6.1)$
$\ell \tau_{\text {had }}$ Run 2, left-handed τ	$8.2(8.6)$	$9.5(6.7)$
$\ell \tau_{\text {had }}$ Run 2, right-handed τ	$7.8(7.6)$	$10(5.8)$
$\ell \tau_{\ell^{\prime}}$ Run 2, unpolarized τ	$7.0(8.9)$	$7.2(10)$
$\ell \tau_{\ell^{\prime}}$ Run 2, left-handed τ	$5.9(7.5)$	$5.7(8.5)$
$\ell \tau_{\ell^{\prime}}$ Run 2, right-handed τ	$8.4(11)$	$9.2(13)$
Combined $\ell \tau$ Run 1 + Run 2, unpolarized τ	$5.0(6.0)$	$6.5(5.3)$
Combined $\ell \tau$ Run 2, left-handed τ	$4.5(5.7)$	$5.6(5.3)$
Combined $\ell \tau$ Run 2, right-handed τ	$5.4(6.2)$	$7.7(5.3)$

ATLAS-CONF-2021-011

- What if LHC data can not be described with out preferred model? Can a more generalised search be performed?
- Very important to estimate background contributions with high precision.
- 22 single-bin signal regions categorised by
- lepton count (3 or 4 leptons)
- presence of an on-Z lepton pair
- magnitude of invariant mass of all leptons
- ETmiss lower or higher than 50 GeV
- Measured number of signal events $\hat{N}_{\text {sig }}$ is defined as the difference between the estimated background and the data.
- No significant deviations observed.

significance $Z=\hat{N}_{\text {sig }} / \Delta \hat{N}_{\text {sig }}$

SR	$0-200 \mathrm{GeV}$	$200-400 \mathrm{GeV}$	$400-600 \mathrm{GeV}$	$>600 \mathrm{GeV}$
3ℓ, On-Z, $E_{\mathrm{T}}^{\text {miss }}<50 \mathrm{GeV}$	-0.2	-0.7	-0.6	-2.5
3ℓ, On-Z, $E_{\mathrm{T}}^{\text {miss }}>50 \mathrm{GeV}$	-1.0	-0.5	-0.4	-1.6
3ℓ, Off-Z, $E_{\mathrm{T}}^{\text {miss }}<50 \mathrm{GeV}$	-0.1	0.3	-2.7	0.1
3ℓ, Off-Z, $E_{\mathrm{T}}^{\text {miss }}>50 \mathrm{GeV}$	-0.2	0.5	0.1	-1.2
SR	$0-400 \mathrm{GeV}$	$>400 \mathrm{GeV}$		
4ℓ, On-Z, $E_{\mathrm{T}}^{\text {miss }}<50 \mathrm{GeV}$	1.0	0.4		
4ℓ, On-Z, $E_{\mathrm{T}}^{\text {miss }}>50 \mathrm{GeV}$	1.8	0.1		
4ℓ, Off-Z	0.1	-1.3		

- Kinematic distributions of interest:

- scalar sum of p_{T} of all objects (3+ bins)
- invariant/transverse mass of all objects ($1+$ bins)
- missing transverse momentum (3+ bins)
- Search for regions: taking the ones with smallest p-value.
- Global overview: observed deviations are compared with pseudo-experiments using the SM-only hypothesis.
- No significant deviations found in ~60 classes.

