Recent theoretical progress in nuclear structure (nuclear PDFs)

P. Zurita

LHCP2021, June 7-12, 2021

Outline

- A quick reminder of nPDFs
- * Latest results
- ***** The future
- * Summary

What are the nPDFs?

We know that the PDF $f_a(x, Q^2)$

- is the probability of finding (in a hadron) a parton a carrying a fraction x of its momentum.
- can't be computed in pQCD but are universal.
- evolve in Q² with DGLAP evolution equations.
- * obtained from global fits to the world data (DIS, DY, jets, EW boson, top, etc).

What are the nPDFs?

We know that the PDF $f_a(x, Q^2)$

- * is the probability of finding (in a hadron) a parton a carrying a fraction x of its momentum.
- can't be computed in pQCD but are universal.
- evolve in Q² with DGLAP evolution equations.
- * obtained from global fits to the world data (DIS, DY, jets, EW boson, top, etc).

For the nuclear case we introduce $f_a^{P/A}(x,Q^2)$

Why do we need them?

- * to understand data like
- * they are the initial state for HIC.
- * they might be relevant to understand the composition of cosmic rays.

nuclear data are used to separate flavours in proton PDF fits.

JHEP 09 (2020), 183

how to extract nPDFs?

just like proton PDFs: take the data and do a fit

a proton PDF is taken as baseline and a smooth dependence in A is assumed

$$f_{i}^{p}(x, Q_{0}^{2})R_{i}(x, A)$$

$$f_{i}^{p}(x, Q_{0}^{2})R_{i}(x, A)$$

$$f_{i}^{p}(x, Q_{0}^{2}) \otimes R_{i}(x, A)$$

$$f_{i}^{p/A}(x, Q_{0}^{2}, A)$$

$$f_{i}^{p/A}(x, Q_{0}^{2}, A)$$
neural network

isospin symmetry is assumed to be valid

$$f_i^A(x, Q^2, A) = \frac{Zf_i^{p/A}(x, Q^2) + (A - Z)f_i^{n/A}(x, Q^2)}{A}$$

In the fitting procedure every step implies a choice and each choice has an impact on the final result

- * EKS: EPJC 9 (1999) 61.
- **EPS09:** JHEP 0904 (2009) 065.
- **EPPS16:** EPJC 77 (2017) no.3, 163.
- * HKM: PRD 64 (2001) 034003.
- * HKN07: PRC 76 (2007) 065207.
- * KA15: PRD 93 (2016) no.1, 014026.
- * KSASG20: arXiv:2010.00555 [hep-ph].

- * nDS: PRD 69 (2004) 074028.
- * DSSZ: PRD 85 (2012), 074028.
- * nCTEQ15: PRD 93 (2016) no.8, 085037.
- * nCTEQ15WZ: EPJC 80 (2020) 10, 968.
- * nTuJu: PRD 100 (2019) no.9, 096015.
- * nNNPDF1.0: EPJC 79 (2019) no.6, 471.
- * nNNPDF2.0: JHEP 09 (2020), 183.

different data selection, error treatment, proton baseline, Q₀, heavy flavour scheme, perturbative order, ...

- * most of the data used in the fits sit at x > 0.01.
- * the modification of the valence up is the best constrained.
- separation of up and down mostly through NC and CC DIS.

- * the sea distributions are not well constrained.
- * flavour separation in the sea sector is not yet fully achieved.

* gluon-sensitive data: single hadron production at RHIC

* TuJu19 has no data that can constrain the gluon.

Latest results on nPDFs

many groups are currently updating their nPDFs using "new" and new data:

"new": e.g. pion+A Drell-Yan (1981, 1987, 1989), single hadron production at LHC.

new: e.g. JLab* NC DIS, LHC** p+Pb (Z and W from Run 2, dijet R_{pPb}, D⁰)

relaxing kinematic cuts, including TMC, etc...

^{*} see Cynthia Keppel's talk tomorrow

^{**} see Vadim Guzey's talk tomorrow

(preliminary) results from EPPS*

- * JLAB and LHC data
- * leading TMC included
- proton uncertainties considered
- * ratios used whenever possible

^{*} from Petja Paakkinen's talk at DIS2021

Latest results

Lead

- * Better constrained gluon anti-shadowing
- * Flavour separation not (much) improved

(preliminary) results from nCGEQ*

* incorporate W and Z boson production from LHC

^{*} from F. Muzakka, P. Duwentäster and E. Segarra's talks at DIS2021

* incorporate single hadron production to access gluon PDFs

* CC DIS (a bit controversial)

There is tension among the different neutrino experiments.

PRL 110 (2013) 212301

No problem if fitting structure functions. PRD85, 074028 (2012)

DimuNeu: Dimuon+ CDHSW+Chorus+NuTeV

• Total χ^2/pt :

Dimuon : 1.27

NuTeV neu, antineu : 1.50 , 1.23 Chorus neu, antineu : 1.27 , 1.09 CDHSW neu, antineu : 0.60 , 0.72

ALL : 1.17

• TENSION between neutrino data sets at low x!

"low x":
$$x < 0.1$$

The tensions in the new fit only happen for NuTeV data.

They disappear if x < 0.1 from CC are removed.

The CC DIS data seems to favour a lower strange at low x.

The single hadron production data seem to favour a higher strange at low x.

* High x data and TMC: using JLAB very precise data

(preliminary) results from nNNPDF*

- * new baseline for nNNPDF3.0: NNPDF4.0
- * NLO and NNLO
- positivity constraint
- * include dijet p+Pb (NLO, NNLO) and EW bosons (NNLO)
- w/o dijet $\rightarrow \chi^2_{dataset}/N = [6.47]$
- w/ CMS dijet pPb $\rightarrow \chi^2_{dataset}/N = [6.16]$
- w/ CMS dijet pPb/pp $\rightarrow \chi^2_{dataset}/N = 3.85$

baseline = NNPDF3.1 + 5 TeV CMS data

Missing correlations might be crucial to describe this data set.

Inability to describe p+p data with NNPDF3.1 severely affects the p+Pb description with nNNPDF2.0.

Largest rapidity bins should be removed (same tension as seen by EPPS21).

Gluon shape still unconstrained.

The future

- * LHC: gluon sensitivity through dijets/hadron production. Oxygen run?
- * Inclusion of other observables (large amount of data available but not used in fits).
- * LHeC? FCC-eh?
- * STAR forward upgrade + sPHENIX
- * JLAB12: explore the high x region and validity of kinematic cuts.
- ***** EIC: down to x~10-4.

- * DIS in collider mode is crucial.
- * Current DIS data can be described quite nicely ($\chi^2/d.o.f=1.02$) with just 3 parameters (and exploiting the sum rules).

- * DIS in collider mode is crucial.
- * Current DIS data can be described quite nicely (χ^2 /d.o.f=1.02) with just 3 parameters (and exploiting the sum rules).

EIC Yellow Report: arXiv:2103.05419

Summary

- * Many nPDFs sets available, still far from the precision of proton PDFs. More data needed (quantity AND quality).
- PDF fitters are taking into account the nuclear effects in their fits.
- * "New"/new data and treatments improve the description.
- New results support the existence of anti-shadowing for the gluon.
- * Flavour decomposition still far from achieved despite precise data.
- Future experiments have a huge potential to improve nPDFs.