

Nucleon Structure and soft QCD from CMS

Rajat Gupta
On behalf of CMS Collaboration

Panjab University Chandigarh (India)

LHCP2021 (Online) June 7-12, 2021

Outline

- Introduction
- CMS Detector
- Soft QCD Measurements
- Diffractive Measurements
- Summary

Introduction

- LHC collisions are complex: due to sub-structure of protons
- QCD: theory of strong interaction between interacting quarks and gluons of proton
 - Hard QCD high p_T : PDFs, strong coupling, perturbation theory, ISR & FSR, parton shower
 - Soft QCD low p_T : perturbative QCD approach not applicable
 - -- Minimum bias events, Fragmentation/hadronization
 - -- Underlying Event (ISR/FSR, BBR, MPI)
 - -- Diffraction
- pp collisions: elastic or inelastic
- Inelastic collisions: diffractive or non-diffractive
- Diffractive processes dominate in forward regions

Main Interaction

Radiation (ISR/FSR)

Fragmentation/Hadronization

Multiple Parton Interactions (MPI)

Beam remnant

Forward detectors at CMS

Dedicated for measuring total pp cross-

- section and understanding proton structure by elastic scattering
- Acceptance: $3.1 \le |\eta| \le 5$
- Consist of 2 near-beam telescopes: Roman Pot
- Leading protons measured at 147 m and 220 m from IP

CASTOR at CMS

- CASTOR: EM-hadronic tungsten-quartz calorimeter at CMS
- Most forward conventional calorimeter deployed at the LHC, at 14 m from interaction point. Acceptance: $-6.6 \le \eta \le -5.2$
- Longitudinally 14-fold segmentation
- Transversally 16-fold segmentation
- CASTOR has no η segmentation! Consequence: measure energy of jets instead of p_T within its acceptance

Double Parton Scattering (DPS)

In general MPI is a softer contribution, ButSome MPIs can be hard

Double Parton Scattering (DPS)

Events where two hard parton-parton interactions occur in single proton-proton collisions

DPS cross-section
$$\sigma_{eff} = \frac{m}{2} \cdot \frac{\sigma_X \cdot \sigma_Y}{\sigma_{X+Y}^{DPS}}$$
 $\begin{cases} m = 1 \text{ when } X = Y \\ m = 2 \text{ when } X \neq Y \end{cases}$

- ▼ Background for rare processes, e.g. Higgs , SUSY etc.
- ✔ Provides information on transverse partonic distribution of hadrons

DPS studies using 4 jets and Z+Jets process are presented in this talk

DPS studies in 4-jets with low p₊ at 13 TeV (CMS-PAS-20-007)

Observables

- Transverse momenta and pseudorapidity spectra of all the jets:
 - $p_{T,1}, p_{T,2}, p_{T,3}$ and $p_{T,4}$
 - η_1 , η_2 , η_3 and η_4
 - $p_{T,1}$ and η_1 in slides, others in backup
- Azimuthal angle of the soft jet pair: $\Delta \phi_{Soft} = |\phi_3 \phi_4|$

- Back-to-back for DPS (peak around π)
- Combined minimum angle of 3 jets: $\Delta \phi_{3j}^{min} = min_{ijk} ||\phi_i \phi_j| + |\phi_j \phi_k||$ DPS (large value), SPS (random)
- Transversal momentum balance of the soft jet pair: $\Delta p_{T,soft} = \frac{|\vec{p}_{T,3}| + |\vec{p}_{T,4}|}{|\vec{p}_{T,3} + \vec{p}_{T,4}|}$

larger value for DPS

Smaller value for DPS

- Maximum difference in pseudorapidity: $\Delta Y = \max_{ij} \left| |\eta_i \eta_j| \right|$
- Azimuthal angle of the most remote jets: $\phi_{ij} = |\phi_i \phi_j|$ for $\Delta Y = max_{ij} ||\eta_i \eta_j||$ Strong correlation in SPS
- Azimuthal angle between the hardest and $\Delta S = \arccos\left[\frac{(\vec{p}_{T,1} + \vec{p}_{T,2}) \cdot (\vec{p}_{T,3} + \vec{p}_{T,4})}{|\vec{p}_{T,1} + \vec{p}_{T,2}| \cdot |\vec{p}_{T,3} + \vec{p}_{T,4}|}\right] \longrightarrow \text{DPS (random), SPS(peak at <math>\Pi$)} the softest jet pair (harder cuts needed):

Selection:

- > Anti- k_{τ} , R = 0.4
- ➤ Region I: p_{T,1 (2,3,4)} > 35 GeV (30,25,20 GeV)
- ▶ Region I: $p_{T,1,(2,3,4)} > 50 \text{ GeV } (30,30,30 \text{ GeV}) \text{ for } \Delta S$
- $|\eta_i| < 4.7$
- ➤ Asymmetric p_T cuts to enhance DPS sensitivity

Workflow:

- Data distributions compared with:
 - 1. PYTHIA8 and HERWIG
 - 2. Multijet Models
 - 3. SPS+DPS Models
- Extraction of effective cross section

DPS studies in 4-jets with low p₊ at 13 TeV (CMS-PAS-20-007)

- ΔY (left) and Φ_{ii} (right)
 - Normalization to first four bins for ΔY and the last bin for Φ_a
- LO Models overshoot the data due to excess of forward/backward low p₊ jets.
- Abs. cross-section prediction improves with NLO or high multiplicity ME (not true for all models)

Φ_{ii} favor angular ordered/dipole antenna PS models over p_{τ} -ordered showers.

DPS studies in 4-jets with low p₊ at 13 TeV (CMS-PAS-20-007)

- $\Delta\Phi_{3i}$ (left) and ΔS (right)
 - Normalization to first four bins for $\Delta\Phi_{3i}$ and the last bin for ΔS_{i}
- Data favour p_⊤-ordered showers for LO models
- Less conclusive for NLO and/or higher-multiplicity ME

• Only distribution insensitive to PS modelling -- hence used for $\sigma_{\mbox{\tiny eff}}$ extraction

DPS studies in 4-jets with low p₋ at 13 TeV (CMS-PAS-20-007)

σ_{eff} measurements (Preliminary)

- Strong dependence of extracted value of σ_{eff} on the model to describe SPS contribution.
- NLO models with $2 \rightarrow 2$ and $2 \rightarrow 3$ ME yield smallest σ_{eff} (~10 mb) implying greater need of DPS contribution
- Including 4 partons in ME of SPS models introduce DPS-like correlations in observables with $\sigma_{\text{eff}} \sim 15$ mb.
- Largest value of σ_{eff} (>~ 20 mb) found for LO models with 2 \rightarrow 2 ME

Overview:

- ➤ First DPS measurement with Z+Jets at 13 TeV with Z decaying into dimuon.
- Medium Muon ID with I_{rel} < 0.15 (R=0.4), opp. charged muons with p_T > 27 GeV, |n| < 2.4</p>
- > Z mass window (71 GeV < M_{uu} < 111 GeV)
- > p_T > 20 GeV, $|\eta|$ < 2.4, $\Delta R(jet,\mu)$ > 0.4, Medium PU MVA ID

Observables: (motivated from prev. measurements)

- $Z + \ge 1$ jet events:
 - $\Delta \phi(Z, j_1)$, $\Delta_{\rho_T}^{\text{rel}}(Z, j_1) = \frac{|\vec{\rho}_T(Z) + \vec{\rho}_T(j_1)|}{|\vec{\rho}_T(Z)| + |\vec{\rho}_T(j_1)|}$
- $Z + \ge 2$ jets events:
 - $\Delta \phi(Z, dijet)$., $\Delta_{p_T}^{rel}(Z, dijet) = \frac{|\vec{p}_T(Z) + \vec{p}_T(dijet)|}{|\vec{p}_T(Z)| + |\vec{p}_T(dijet)|}$
 - $\Delta_{p_T}^{\text{rel}}(j_1, j_2) = \frac{|\vec{p}_T(j_1) + \vec{p}_T(j_2)|}{|\vec{p}_T(j_1)| + |\vec{p}_T(j_2)|}$.

Cross-section (pb)		$Z + \ge 1$ Jets	$Z + \ge 2$ Jets
Measurement		158.5 ± 0.3 (stat)	$44.8 \pm 0.4 \text{ (stat)}$
		\pm 7.0 (syst)	\pm 3.7 (syst)
		\pm 1.2 (theo)	\pm 0.5 (theo)
		\pm 4.0 (lumi) pb	\pm 1.1 (lumi) pb
MG5_aMC (NLO)	PYTHIA 8, CP5 tune	167.4 ± 9.7	47.0 ± 3.9
	PYTHIA 8, CDPSTP8S1-WJ tune	178.4 ± 0.3	50.5 ± 0.2
	HERWIG 7, CH3 tune	158.3 ± 1.1	44.4 ± 0.6
MADGRAPH + PYTHIA 8, CP5 tune (LO)		161.2 ± 0.1	45.3 ± 0.1
SHERPA (NLO+LO)		149.8 ± 0.2	41.6 ± 0.1

Measured integrated cross sections and comparison with different MC generators for $Z + \ge 1$ jet and $Z + \ge 2$ jet events

- Well described by SHERPA, MC@NLO+PYTHIA8 (tune CP5) and MC@NLO+HERWIG7 (tune CH3) predictions.
- MC@NLO+PYTHIA8
 (DPS tune CDPSTP8S1)
 overestimate by 10-15%

- MC@NLO+P8 (MPI-OFF) is lower than measurement (by 50%) in lower $\Delta\Phi$ and high $\Delta_{rel}p_{T}$ region.
- MC@NLO+P8 (MPI-OFF), MC@NLO+H7 and SHERPA: behave similar while describing differential and area normalized distributions.
- MC@NLO+P8 CP5 (with MPI) describes diff. cross-section within uncertainty (except lower region of $\Delta_{rel}p_{T}$ (SPS dominated), but underestimates measurement in case of area-normalized distributions (except lower $\Delta_{rel}p_{T\,rection}$).
- MC@NLO+P8 (CDPSTP8S1-WJ) fails to describe differential cross-section but describe shape of distribution within uncertainty) --> well modelled collision energy dependence of MPI parameters in tune

Hard color-singlet exchange in dijet events at 13 TeV (arxiV:2102.06945) Accepted by PRD

rapidity gap

gap

Jet 1

- ♦ Events with two high-p_⊤ jets separated by a pseudorapidity gap (interval void of particle activity).
 - DGLAP dynamics largely suppressed
 - allow to study BFKL pomeron
- Central gap can be destroyed by soft-parton interactions.

- In pp collisions with intact protons, soft-parton activity is largely reduced
 - -- Central gap more likely to "survive"

- Analysis Strategy:
 - Study jet-gap-jet in inclusive dijet production in pp collisions at 13 TeV with CMS
 - > Study jet-gap-jet events with leading protons in pp collisions at 13 TeV (subset of CMS only dijet sample + forward protons detected with TOTEM roman pots): studied first time experimentally

Hard color-singlet exchange in dijet events at 13 TeV (arxiV:2102.06945) Accepted by PRD

Event Selection

- Particle-flow anti-k_→ jets R=0.4
- 2 leading jets $p_{T} > 40$ GeV each
- Leading jet 1.4< $|\eta_{jet}|$ <4.7, and $\eta_{jet-1} \times \eta_{jet-2}$ <0 --> favours t-channel exchange
- Pseudorapidity gap: charged particle multiplicity b/w leading 2 jets (p_τ>200 MeV, |η|<1)

Fraction of dijet events produced by color-singlet exchange f_{CSE} :

$$f_{CSE} = \frac{N(N_{tracks} < 3) - N_{bkg}(N_{tracks} < 3)}{N_{all}} = \frac{colour\ singlet\ exchange\ dijet\ events}{all\ dijet\ events}$$

 $\boldsymbol{f}_{\text{CSE}}$ is measured as a function of $\Delta \boldsymbol{\eta}_{jj},\,\boldsymbol{p}_{\text{T'jet-2'}},\,\Delta \boldsymbol{\varphi}_{jj}$

- Gap survival probability |S²| is expected to decrease with increasing COM, due to increase in spectator parton activity with COM.
- Within uncertainties, gap fractions stop decreasing with COM (7 TeV to 13 TeV), in contrast to trend observed at lower energies 0.63 TeV --> 1.8 TeV --> 7 TeV

Hard color-singlet exchange in dijet events at 13 TeV (arxiV:2102.06945) Accepted by PRD

- f_{CSE} vs $\Delta \eta_{jj}$ expands the reach in pseudorapidity separations covered in the earlier 7 TeV measurements,
- Trend of increasing f_{CSE} vs $\Delta \eta_{jj}$ observed @7 TeV is confirmed @13 TeV
- Extends the range previously explored towards large values of Δη_{ii}

Jet-gap-jet events with intact protons:

- First observation of this process experimentally
- Hard color singlet exchange fraction f_{CSE} is $2.91 \pm 0.70 (stat)_{-0.94}^{+1.01}$ larger than that in standard jet-gap-jet events.

Summary

- An overview of some representative soft QCD and diffractive measurements has been presented.
- LHC has provided access to a large phase space as well as a new energy scale for understanding various aspects of QCD.
- CMS has a rich physics program which is perfect testing ground for QCD models:
 - Improve our picture of nucleon structure and hadron collision, as well as its universality
- Energy measurements in the very forward rapidity regions indicate some interesting potential to further improve the underlying event model predictions
- Still more measurements and efforts as well as LHC Run3 preparations on-going. Stay Tuned!

Thanks for your attention!

Extraction Strategy of $\sigma_{eff}(1)$

- Before extraction of σ_{eff} from the pocket formula
 - Define the processes A and B $\sigma_{A,B}^{DPS} = \frac{m}{2} \frac{\sigma_A \cdot \sigma_B}{\sigma_{AB}}$
 - · Extract method
- 4-jet DPS event when 1, 2, 3 jets come from process A and 3, 2, 1 jets come from process B resp.
 - Define A and B as inclusive single jet processes $\rightarrow \sigma_A = \sigma_{jet}(p_T \ge 50 \, GeV)$
 - Lowest threshold jet trigger = 30 GeV
 - → Extraction in region II performed
- Rapidity cross sections of processes A and B measured from data!
- Combining events from A and B into a DPS event
 - Veto condition for overlapping jets
 - 4-jet efficiency ε_{Ai} = 0.32441 ± 0.00053 (stat.) found
 - \rightarrow Combination rate of events from A and B that result in a 4-jet event passing the region II selection criteria
 - Pure DPS data sample is formed, same is done for Pythia 8 and Herwig++ with CUETP8M1 and CUETHS1 tunes resp.
- Rewrite pocket formula, taking overlap of A and B into account:

$$\sigma_{A,B}^{DPS} = \frac{\epsilon_{4j}}{\sigma_{eff}} \left(\frac{1}{2} \sigma_A^2 + \sigma_A \cdot (\sigma_B - \sigma_A) \right) = \frac{\epsilon_{4j} \sigma_A \sigma_B}{\sigma_{eff}} \left(1 - \frac{1}{2} \frac{\sigma_A}{\sigma_B} \right)$$

Extraction Strategy of $\sigma_{eff}(2)$

- Before extraction of $\sigma_{\mbox{\scriptsize eff}}$ from the pocket formula
 - Define the processes A and B
 - Extract method

$$\sigma_{A,B}^{DPS} = \frac{\epsilon_{4j} \sigma_A \sigma_B}{\sigma_{eff}} \left(1 - \frac{1}{2} \frac{\sigma_A}{\sigma_B} \right)$$

Template method for determination DPS cross section

$$\sigma^{Data}(\Delta S) = f_{DPS} \cdot \sigma^{Data}_{DPS}(\Delta S) + (1 - f_{DPS}) \cdot \sigma^{MC}_{SPS}(\Delta S)$$

- ΔS fount to be least affected by parton showers (see results), used in extraction!
- TFractionFitter class: likelihood fit using Poisson statistics
- Optimal value of the fraction of DPS events in data (f_{DPS}) determined
- Background template: SPS MC models
- Signal template:
 - ΔS_{DPS} determined from pure DPS data sample
 - Fully corrected through same exact unfolding procedure as other observables
 - → Constructed pure DPS MC samples used for unfolding
- DPS cros section from f_{DPS} : $\sigma_{A,B}^{DPS} = f_{DPS} \int \sigma^{Data} (\Delta S) d(\Delta S)$
 - \rightarrow DPS is simplest form of multiple partonic interactions (MPI), expected Calculation of σ eff possible with DPS cross section as input in the pocket-formula!

Pythia 8, Herwig++ and Herwig 7 (1)

- Pythia 8
 - CUETP8M1, CDPSTP8S1-4j (GEN-14-001), CP5 tunes
 - p,-ordered parton shower
- · Pythia 8 with Vincia showering
 - Standard Pythia 8.3 tune
 - dipole-antenna showering in Pythia 8
- Herwig++
 - CUETHS1 tune
 - Angular-ordered parton shower
- Herwig 7
 - CH3, SoftTune tunes
 - Angular-ordered parton shower

Sample	Tune	$\sigma_{\rm I}~(\mu{\rm b})$	$\sigma_{\rm II} \; (\mu {\rm b})$
Data	-	$2.77 \pm 0.02 ^{~+0.68}_{~-0.55}$	$0.61 \pm 0.01 ^{+0.12}_{-0.10}$
PYTHIA 8	CUETP8M1	5.03	1.07
PYTHIA 8	CP5	4.07	0.84
PYTHIA 8	CDPSTP8S1-4j	7.06	1.28
PYTHIA 8+VINCIA	Standard Pythia 8.3	4.66	0.97
HERWIG + +	CUETHS1	4.35	0.83
Herwig 7	CH3	4.82	0.98
HERWIG 7	SoftTune	5.34	1.07

- MadGraph5
 - 2 LO samples, 2→2,3,4 MEs combined, showered with Pythia 8 with the CP5 tune and with Pythia 8 with Vincia showering
 - NLO 2→2 sample, showered with Pythia with CP5 tune
- PowhegBox
 - NLO 2→2 and NLO 2→3 samples
 - Showered with Pythia interfaced with the CP5 tune
- KaTie is tree-level ME generator
 - On-shell production showered with Pythia 8 and Herwig 7
 - Off-shell production possible, showered with Cascade
 → Initial states receive nonzero k_r, used with different TMD PDFs
 - LO 2→4 ME for all samples
 - Generation of pure DPS sample possible

Sample	Tune/TMD	$\sigma_{\rm I} (\mu b)$	$\sigma_{\text{II}} (\mu \text{b})$
Data	-	$2.77 \pm 0.02 ^{+0.68}_{-0.55}$	$0.61 \pm 0.01 ^{+0.12}_{-0.10}$
KaTie on-shell, pythia 8	CP5	4.23	2.87
KATIE on-shell, HERWIG 7	CH3	3.56	2.25
KaTie off-shell, Cascade	MRW	2.40	1.46
KaTie off-shell, Cascade	PBTMD	2.57	1.56
MadGraph 5 LO 2 \rightarrow 2, 3, 4, рутніа 8	CP5	2.69	1.26
MadGraph 5 LO 2 \rightarrow 2, 3, 4, РУТНІА 8+VINCIA	Standard PYTHIA 8.3	1.93	0.90
MadGraph 5 NLO 2 \rightarrow 2, Pythia 8	CP5	2.12	1.03
POWHEG NLO 2 \rightarrow 2, PYTHIA 8	CP5	3.50	1.62
POWHEG NLO 2 \rightarrow 3, PYTHIA 8	CP5	2.55	1.22

MultiJet Samples (3)

- $\Delta \phi_{Soft}$ (left) and $\Delta p_{T,Soft}$ (right)
- All MadGraph models overshoot DPSsensitive slope
- All KaTie and Powheg models indicate need for DPS contribution

- Both MadGraph LO models overshoot DPS-sensitive slope
- All KaTie and NLO models indicate need for DPS contribution

SPS+DPS Samples (1)

- Pythia 8
 - Pythia 8 allows generation of two times 2→2 ME at LO
 - σ_{eff} determined by UE parameters, not directly accessible
 - · Pythia 8 with CP5 tune (SPS+DPS) sample
 - · Pythia 8 with CDPSTP8S1-4j without DPS contribution
 - → DPS is already in tune
- KaTie on- and off-shell
 - Include DPS contribution to SPS 2→4 ME at LO
 - Two times 2→2 ME at LO generated
 - σ_{eff} directly accessible, put to 21.3 mb (GEN-14-001)
 - On-shell sample hadronization only possible with Pythia 8
 - Off-shell samples with Cascade
 - → DPS contribution through non-perturbative corrections from parton to hadron level

Sample	Tune/TMD	$\sigma_{\rm I}~(\mu {\rm b})$	$\sigma_{\rm II}$ (μ b)
Data	-	$2.77 \pm 0.02 ^{~+0.68}_{~-0.55}$	$0.61 \pm 0.01 ^{+0.12}_{-0.10}$
SPS+DPS KATIE on-shell, PYTHIA 8	CP5	5.04	2.14
SPS+DPS KATIE off-shell, CASCADE	MRW	3.11	0.95
SPS+DPS KATIE off-shell, CASCADE	PBTMD	3.12	0.99
SPS+DPS PYTHIA 8	CP5	4.76	0.94
PYTHIA 8	CDPSTP8S1-4j	7.06	1.28

SPS+DPS Samples (2)

- $p_{T,1}$ (left) and η_1 (right)
 - Off-shell KaTie good description at low p_T (2→4 ME)
 - Pythia 8 with CP5 good description at high p_τ (2→2 ME)
 - DPS contribution mainly at low p_T and forward/backward regions compared to SPS predictions

LHCP2021

