Nucleon Structure and Soft QCD from LHCb

Agnieszka Obłąkowska-Mucha AGH-UST Kraków, Poland On behalf of LHCb Collaboration

Outline

Recent LHCb results with a vital impact on phenomenological models and generator tunes aimed to understand the soft component of the hadron-hadron collision.

- 1. Measurement of charged-particle multiplicity production in pp collisions at $\sqrt{s} = 13$ TeV LHCb-PAPER-2021-010 (in preparation)
- 2. Measurement of the nuclear modification factor and prompt charged particle production in pPb and pp collisions at $\sqrt{s} = 5$ TeV LHCb-PAPER-2021-015
- 3. Observation of enhanced Double Parton Scattering in Proton-Lead Collisions at $\sqrt{s_{NN}} = 8.16$ TeV, Phys. Rev. Lett. **125**, 212001

LHCb spectrometer

Physics program:

- CP Violation and rare decays of beauty and charm meson
- QCD, electroweak, exotica ...

Excellent performance:

- 3 fb⁻¹ accumulated in RUN I, 6 fb⁻¹ in Run II;
- Tracking system with momentum resolution $\Delta p/p \sim 0.5 1\%$ (from 2 to 200 GeV);
- Excellent time (50 fs) resolution;
- Precise vertexing: $\sigma(IP) = (15 + 29/p_T[GeV]) \mu m$
- Efficient hadronic identification (2-100 GeV/c):

 $\mathcal{E}(K \to K) \sim 95\%$ misID $\mathcal{E}(\pi \to K) \sim 5\%$

- Calorimeters ECAL, HCAL, $\Delta E/E = 1\% + 10\%/\sqrt{E[GeV]}$ for ECAL
- HeRSChel detector: scintillator counters covering high rapidity region to veto detector activity (for rapidity gap)

LHCb insights into hadrons

- 1. LHCb is the only detector at LHC fully instrumented in the forward region.
- 2. The forward region is sensitive to low Bjorken-x QCD dynamics and multiparton interaction.
- 3. LHCb can work in the collider and fixed target mode.

- proton-proton colliding mode: $2 < \eta < 5$
- ion colliding mode:
 - forward and backward region
- fixed target (SMOG):
 - central and backward

Charged-particle multiplicity @ 13 TeV

Measurement of prompt charged-particle multiplicity production in pp collisions at \sqrt{s} = 13 TeV (LHCb-PAPER-2021-010, to be submitted to JHEP).

Motivation:

- 1. Light mesons constitute > 95% of the final state hadrons.
- 2. Prediction of multiple parton interaction based of effective models with parameters tuned to experimental results.
- 3. Searches of physics BSM requires good understanding of soft particle production.
- Unbiased data sample $\mathcal{L} = 5.4 \text{ nb}^{-1}$ (2015, two magnet polarities).
 - only tracks reconstructed in the entire tracking system, low fake-track probability;
- Measurement of differential cross-section of prompt production of long-lived charged particles^{*}, separately for positively and negatively charged particles in bins: $p_T \in [0.08, 10] \text{ GeV/c}, \eta \in [2, 4.8]$

$$\frac{d^2\sigma}{d\eta \ dp_T} \equiv \frac{\boldsymbol{n}}{\mathcal{L} \ \Delta\eta \ \Delta p_T}$$

Corrections to particle production

1. Comparison of data with simulation of background and \mathcal{E} :

 $n_{cand} = \mathcal{E}n + \sum_{i} n_{i,bkg}$, *n* - signal particles

- background: fake tracks, photon conversions, charged-pion material interactions and strange decays;
- *E* and *n_{i,bkg}* are taken from simulation after datadriven correction for imperfect modelling,
- 2. In each bin of (η, p_T) efficiency is corrected for:
 - differences in \mathcal{E} between data and simulation (muons from $J/\psi \rightarrow \mu^+\mu^-$);
 - simulated particle composition (π, K, p)

Charged-particle multiplicity @ 13 TeV

Results:

- Differential X-section of prompt production of charged ling-lived particles;
- Dissimilarities wrt models are between -26% and +170%.
- Smallest discrepancies in EPOS-LHC.

Source	Relative uncertainty in $\%$
Data-sample size	< 0.02
Simulated-sample size	< 3.0
Selection efficiency	0.9 - 5.1
Fake tracks	0.1 - 9.5
Material interactions	< 12
Strange-hadron decays	< 1.5
Beam-gas interactions	< 1.7 .
Other background contributions	< 1.1
Integrated luminosity	2.0

Total uncertainty is between 2.3% and 15% depending on the kinematic bin.

Cross-section mostly overestimated by recent hadronic-interaction models.

LHCP 2021

A.Obłąkowska-Mucha

Charged-particle multiplicity @ 13 TeV

Results:

- Ratio of differential X-sections for positively and negatively charged particles.
- Best agreement with PYTHIA
 8.303 Monash tune.

Cross-section mostly overestimated by recent hadronic-interaction models.

Particle production in pp @ 7 TeV

Measurement of charged-particle multiplicities in pp collisions at \sqrt{s} = 7 TeV in the forward region Eur. Phys. J. C (2012) 72:1947 Measurement of the forward energy flow in pp collisions at \sqrt{s} = 7 TeV Eur. Phys. J. C (2013) 73:2421

*Measurement of charged-particle multiplicities and densities in pp colisions at \sqrt{s} = 7 TeV in the forward region Eur.Phys.J.C (2014) 74:2888

Eur.Phys.J.C (2014) 74:2888

* Selection:

- at least one reconstructed track in $2 < \eta < 4.8$,
- at least one particle with $p_T > 0.2$ GeV/c, p > 2 GeV/c,
- corrections for fake tracks and ghosts,
- data driven approach to correction for undetected events.

Results:

- none of the generators were able to fully describe the data,
- generator tuned to LHC measurements are in better agreement with data
- models underestimate charged particle production,

Charged particle production in pPb

Measurement of the nuclear modification factor and prompt charged particle production in pPb and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV LHCb-PAPER-2021-015, in preparation

- 1. Colisions of pPb provide study of nuclear effects in initial and final state.
- 2. Dynamics of HI probed in context of Cold Nuclear Matter and saturation scale.
- 3. LHCb can explore the low-x and low Q^2 region, down to $p_T \rightarrow 0$.
 - forward mode: $10^{-6} \le x \le 10^{-4}$
 - backward mode: $10^{-3} \le x \le 10^{-1}$

first results in soft-regime in pPb collisions

- 4. LHCb pPb data from 2013 (81.84 μ b⁻¹), pp 2015 (3.49 nb⁻¹).
- 5. Prompt charged particle yields measured with tracking system.
- 6. Selection with min bias trigger (one reconstructed track).
- 7. Kinematic coverage:
 - p > 0.2 GeV/c, $0.2 < p_T < 8$ GeV/c,
 - pp: $2 < \eta < 4.8$
 - pPb (FWD): $1.5 < \eta < 4.3$
 - pPb (BWD): $-5.3 < \eta < -2.5$.
- 7. Raw yield corrected by:
 - reconstructed and selection efficiencies,
 - background from fake tracks and secondary particles.
- 8. Total uncertainty: 2.8% in $d^2\sigma$ and 4.2% in R_{pPb}

Differential cross-section: $\frac{d^2 \sigma^{ch}(\eta, p_T)}{d\eta \ dp_T} \equiv \frac{N^{ch}}{\mathcal{L} \ \Delta \eta \ \Delta p_T}$

LHCb-PAPER-2021-015

Nuclear Modification Factor

 $R_{pPb}(\eta, p_T) \equiv \frac{1}{A} \frac{d^2 \sigma_{pPb}^{ch}(\eta, p_T) / d\eta \, dp_T}{d^2 \sigma_{pp}^{ch}(\eta, p_T) / d\eta \, dp_T}$ A = 208

Results:

- 1. Suppression of charged particle production in pPb wrt pp at forward rapidity reaching $R_{pPb} = 0.3$ for low- p_T and high η .
- 2. Enhancement at backward rapidity for $p_T > 1.5$ GeV/c. Max $R_{pPb} \sim 1.3$ is reached (depending on η).

Comparison with models for $p_T > 1.5$ GeV/c:

- nPDF set EPPS16 and CT14 reproduces forward data (within uncertainties),
- CGC in the FWD (saturation region),
- pQCD+Multiple Scattering in the nucleus in agreement with the most backward data, but is unable to reproduce the other regions.

EPPS16: J. W. Cronin et al. Phys. Rev. D 11 (1975) 3105. Helenius et al, JHEP 09 (2014) 138, arXiv:1406.1689 CGC: T. Lappi and H. Mantysaari, Phys. Rev. D 88 (2013) 114020 pQCD: Z.-B. Kang, I. Vitev, and H. Xing, Phys. Rev. D 88 (2013) 054010 11

Nuclear Modification Factor

Comparison with other experiments:

- One of the most precise measurement of R_{pPb} to date with extended R_{pPb} coverage from very backward to very forward rapidity.
- ALICE result seems as transiton between FWD and BWD.

Evolution with x and Q^2 (crucial for Cold Nuclear Matter study):

$$Q_{exp}^2 = m^2 + p_T^2, m = 256 \text{ MeV/c}^2, x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-\eta}$$

• $R_{pPb} x_{exp}$ evolution is Q_{exp}^2 dependent with start of decreasing at $x_{exp} > 0.1$

Double Parton Scattering in pPb

Observation of enhanced Double Parton Scattering in Proton-Lead Collisions at $\sqrt{s_{NN}} = 8.16$ TeV, Phys. Rev. Lett. **125**, 212001 (2020)

First measurement of charm pair production in pPb collision at $\sqrt{s_{NN}}$ =8.16 TeV.

Motivation:

- Measurements of multiple parton scattering provide insight into the structure and long-range low-momentum scale interactions of the proton.
- MPI are the main factor that influence multiplicities.
- Ratio of DPS to SPS cross-section in pPb is expected to be about 3 times larger than in pp heavy ion data are cleaner environment to study DPS.
- Test of PDF via comparison of single parton scattering (SPS) or multiple (double) parton scatterings (DPS).
- Production of open charm mesons:
 - LS (like-sign, cc), OS (opposite sign, $c\bar{c}$) pairs.
 - OS produced in SPS are correlated, correlation in pPb is modified wrt pp due to nuclear matter effects (nPDF).
 - LS pair in DPS are not correlated.
- Studies of LS pairs and a test of σ_{eff} universality.

 $pp(pPb) \rightarrow A + B + X$ $\sigma_{DPS}^{AB} = \frac{k}{2} \frac{\sigma^A \sigma^B}{\sigma_{eff}}$ k = 1(2) for $A = B \neq B$ DPS SPS p, Pbp, Pb $A, B \equiv D = \{D^0, D^+, D_s^+\}$ and cc

Candidates / [4 MeV/c²] 001 001 002 002 002 001 002 002 🕂 Data 🕂 Data LHCb, p Pb - Fit - Fit $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ $-D^0+D^0$ $s_{NN} = 8.16 \text{ TeV}$ $-D^0+D^0$ — D⁰+Comb — D⁰+Comb. -- $Comb + D^0$ --- Comb.+D⁰ Candidates / 201 - Comb.+Comb Comb.+Comb 1850 1850 1800 1900 18001900 $m_1^{D^0} \, [{\rm MeV}/c^2]$ $m_{2}^{D^{0}}$ [MeV/c²] $1/\sigma d\sigma/d(\Delta\phi/\pi)$ $\sqrt{\sigma} d\sigma/d(\Delta\phi/\pi)$ LHCb, pPb LHCb, Pbp $- D^0 D^0$ $- D^0 D^0$ $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ $\rightarrow D^0 \overline{D}^0$ $\rightarrow D^0 \overline{D}^0$ $\cdots D^0 \overline{D}^0$ Pythia8 $\cdots D^0 \overline{D}^0$ Pythia8 0.5 0 0.8 0.2 0.4 0.6 0.2 0.8 0.4 0.6 $\Delta \phi(DD)/\pi$ $\Delta \phi(DD)/\pi$ $|\sigma d\sigma/d(\Delta\phi/\pi)|$ $/\sigma d\sigma/d(\Delta\phi/\pi)$ LHCb, pPb LHCb, Pbp $- D^0 D^0$ $- D^0 D^0$ $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ $\rightarrow D^0 \overline{D}^0$ $\rightarrow D^0 \overline{D}^0$ $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ $\cdots D^0 \overline{D}^0$ Pythia8 $\cdots D^0 \overline{D}^0$ Pythia8 0.5 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8 $\Delta \phi(DD)/\pi$ $\Delta \phi(DD)/\pi$ $p_T(D^0) > 2 \text{ GeV/c}$ 14

Phys. Rev. Lett. 125, 212001

Double Parton Scattering in pPb

Selection:

- LHCb FWD and BWD pPb data (12.2±0.3 nb⁻¹ and 18.6±0.5 nb⁻¹)
- Pairs: $D^0 D^{\pm}$, $D^0 D_s^{\pm}$, $D^+ D_s^{\pm}$, $J/\psi D^{0,\pm}$,
- Dominant source of systematic uncertainty originates from reconstruction efficiency: 5% per track in pPb, 10% in Pbp,

Results:

1. Study of azimuthal angle $\Delta \phi$ between mesons:

no cut on $D p_T$: both LS and OS $\Delta \phi$ distributions are uniform, described by Pythia8;

if $p_T(D^0) > 2$ GeV/c: $D^0 D^0 \Delta \phi$ distribution is flat (LS in DPS are expected to be uncorrelated),

 $D^0\overline{D}^0$ favours $\Delta\phi \cong 0$, tensions with Pythia8.

LHCb ГНСр

Double Parton Scattering in pPb

Results:

- 2. Cross-sections for all charm pairs: $\sigma = \frac{N_{corr}}{\mathcal{L} \mathcal{B}_1 \mathcal{B}_2}$; N_{corr} is a signal yield after efficiency correction and subtraction of charm-from-b background.
 - LS Open Charm: good agreement with models for both SPS and DPS.
 - Prompt single charm X-section in pPb is smaller than in Pbp, explained by the modification of nPDF. In DPS this effect is stronger.
- 3. Forward-backward ratio R_{FB} : LS $D^0 D^0$ can be interpreted as production via DPS.
 - $D^0 \overline{D}^0$ well represented in Pythia8.

$$R_{FB} \equiv \frac{\sigma_{pPb}}{\sigma_{Pbp}} = \begin{cases} 0.40 \pm 0.05 \pm 0.10 \text{ (LS)} \\ 0.61 \pm 0.04 \pm 0.12 \text{ (OS)} \\ 0.16 \pm 0.06 \pm 0.04 \text{ (}J/\psi D^0\text{)} \end{cases}$$

$\begin{bmatrix} 0.6 \\ 0.5 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.$

Phys. Rev. Lett. 125, 212001

Double Parton Scattering in pPb

Results:

4. LS over OS X-section $R(D_1, D_2)$: 3 times enhancement of LS $D^0 D^0$ pair production over OS $D^0 \overline{D}^0$ from pp to pPb:

 $R(D_1, D_2) \equiv \frac{\sigma(D_1, D_2)}{\sigma(D_1, \overline{D_2})} = \begin{cases} 0.308 \pm 0.015 \pm 0.010 \text{ (pPb)} \\ 0.391 \pm 0.019 \pm 0.025 \text{ (Pbp)} \end{cases}$

5. Effective X-section $\sigma_{eff,pPb}$ assuming DPS only, is ~1 b what confirms that DPS production in pPb is enhanced by a factor of three: $\sigma_{pPb}(DPS) \approx 3A \sigma_{pp}(DPS)$

$\sigma_{eff,pPb} [b]$			
Pairs	$-5 < y(H_c) < -2.5$	$1.5 < y(H_c) < 4$	pp extrapolation
$D^0 D^0$	$0.99 \pm 0.09 \pm 0.09$	$1.41 \pm 0.11 \pm 0.10$	4.3 ± 0.5
$J\!/\psi D^0$	$0.64 \pm 0.10 \pm 0.06$	$0.92 \pm 0.22 \pm 0.06$	3.1 ± 0.3
		3 times less than pp extrapolation	
		with A=208 without modification of	
		nPDF for DPS production	

$$R \equiv \frac{\sigma_{pPb}}{208 \sigma_{pp}} = \begin{cases} 1.3 \pm 0.2 \ (pPb \ D^0 D^0) \\ 4.2 \pm 0.8 \ (Pbp \ D^0 D^0) \end{cases}$$

Different level of DPS enhancement in *R*

$$\sigma_{eff}(\psi D) = \frac{\sigma_{\psi} \, \sigma_D}{\sigma_{\psi D}(DPS)}$$

LHCP 2021

A.Obłąkowska-Mucha

Summary

LHCb shows potential in the study of the insight of nucleon in proton-proton and proton-lead LHC runs with constraints to nuclear PDFs and saturation models down to very low x:

- 1. Measurement of differential cross-section of prompt production long-lived charged particles in pp collisions at \sqrt{s} = 13 TeV.
 - as a function of p_T and η , separately for positively and negatively charged particles
 - valuable input for generators, recent hadronic model overestimate data.
- 2. First and most precise measurement of differential cross-section of prompt charged particles in proton-lead at $\sqrt{s_{NN}}$ =5.02 TeV and proton-proton collisions with the first determination of R_{pPb} for prompt charged particles in forward and backward regions at LHCb.
 - Nuclear modification factor in pPb indicate a nuclear suppression at forward rapidity compared to proton-proton.
- 3. Measurement of enhancement of Double Parton Scattering and two-parton correlations in Open Charm production in pPb.