Orbit/Crossing: 12904927

Salim CERCI **Adiyaman University** On behalf of the CMS Collaboration 10/6/2021

Outline

- Introduction
 - QCD at LHC
- QCD measurements
 - ► 3-jet/Z+2jet angular+momentum (SMP-17-008 submitted to EPJC)
 - ► Radius scan for inclusive jets (SMP-19-003, JHEP12(2020)082)
 - ► Differential Z/gamma jets (SMP-19-010, submitted to JHEP)
 - ▶ Differential Z+c jet cross section (SMP-19-011, JHEP04(2021)109)
 - Azimuthal correlations (SMP-17-009, EPJC 79 (2019) 773)
- Summary
 - ★ Many more results exist and and are discussed in details in the other talks.

QCD @ LHC

- The main goal of QCD studies is to improve our detailed description of the SM physics.
- QCD is the theory of strong interaction describing the interactions between quarks & gluons

Hard QCD

- Perturbation theory pQCD
- PDFs
- Initial & final state radiation (ISR, FSR)
- Parton shower & hadronization

- QCD events are immensely complicated
 - theoretical predictions very hard
 - Experimental challenges
- Studies of QCD are key to understand production of all (B)SM signals & backgrounds at the LHC.

Soft QCD

- Multiparton scattering
- UE activity
- Fragmentation

- Multi-jet correlations are sensitive to the modeling of radiative processes.
- Goal : study to probe large or small angle, soft and hard radiation.
- Measure two observables of sub-leading jets in 3-jet events (8 & 13 TeV) & Z+2-jet events (8 TeV) :
 - Transverse momentum ratio (p_{T_3}/p_{T_2}) and angular separation (ΔR_{23})
- Split events into categories of interest

- Large-angle and hard radiation well described by calcuations using higher order ME (LO 4j+PS).
- Soft region well described by PS approach (LO 2j+PS and NLO 2j+PS).
- Collinear region not well described by either.

 ΔR_{23}

 ΔR_{23}

- Double differential (p_T, y) jet cross sections are sensitive to PDFs over a wide (x,Q^2) range, in particular high-x gluon and valence
- R is sensitive to various processes in the evolution of parton into jet (radiation & PS, hadronization, UE)
- $\delta p_{\tau} \equiv$ "lost" transverse momentum \rightarrow calculated using a QCD splitting function, with LO in the small-R approx. (R<<1)

Measurement

- ▶ 2016 data used
- ► PF jets (p_{τ} > 84 GeV; $|\eta|$ < 2.5); 0.1 < R <1.2
- ► Double-differential inclusive jet cross section ratio
- ► Unfolding to particle level
- ► Comparisons to LO and NLO predictions

- Inclusive jet cross sections are determined in p₊ and y bins for all the jet sizes
- Ratio is taken with respect to AK4 inclusive jet cross section in the same p₊ and y bin

- NLO+PS calculations agree well with for high jet p₊ (all R) data.
- NLO corrections on fixed-order LO are needed.
- Accurate modeling of non-perturbative (UE, hadronization) effects is essential.

Z/γ + jets differential cross section

SMP-19-010 (submitted to JHEP)

- $ightharpoonup Z/\gamma$ ratio is sensitive to higher order EW corrections at high $p_{_{T}}$
- Precision test of pQCD
- Important input to constrain backgrounds in searches
- First measurement of collinear emission of a Z + high p₊ jet!

Measurement

- Differential cross sections & ratio presented vs p_{T} & $\Delta R_{Z_{iet}}$
- **2016** data, Z bosons reconstructed from muons $(p_T>100 \text{ GeV}; |\eta|<2.4)$
- Requires lead jet ($p_T > 100$ GeV $|\eta| < 2.4$), and photons ($p_T > 200$ GeV; $|\eta| < 1.4$), testing bosons p_T up to 1.5 TeV.
- Comparison with LO+ NLO predictions
- Consistency within the uncertainties across the entire p_range

emission

Back-to-back

- Z+c is sensitive to charm content: perturbative and NP (i.e. intrinsic charm)
- important background in BSM searches
- Extract Z+c components with fit to the invariant mass of tracks m_{sv} associated with secondary vertex.

- Madgraph LO agrees well within uncertainties
- Sherpa (NLO) and Madgraph NLO overestimate the data.
- Inclusive Z+jets agrees better with NLO PDFs may overestimate charm quark content in the proton.

 $p_{\tau}^{\text{c jet}}$ [GeV]

Azimuthal correlations

- Allows a more precise test of different resummation strategies
- Consider events: the two leading jets are nearly collinear ("back-to-back") Δφ~180°

Azimuthal correlations

■ MC@NLO method of combining PS with the NLO parton level calculations has advantages compared to the POWHEG method

Summary

- Broad range of physics results to deepen our understanding of QCD
 - Investigation on modelling of soft, collinear, hard and large-angel QCD phase
 space with multijet correlation measurements
 - NLO modelling doing well with Z/γ +jets
 - Z+c measurement shows PDFs may overestimate charm content
- New measurements are still to come to be used in precision QCD analyses and to improve the understanding of the proton structure

THANKS FOR YOUR ATTENTION!

BACKUP

Jet reconstruction and jet calibration @ CMS

Jet reconstruction procedure: input objects (e.g. particles) → apply jet finding algorithm → jet reconstruction

■ Anti-k_T jet clustering algorithm is used by CMS measurements

Factorized Jet Energy Correction approach in CMS:

- Particle Flow (PF) is an event reconstruction technique which attempts to reconstruct and identify all stable particles in the event, through the optimal combination of all CMS sub-detectors.
- PF Jets are the output of the jet algorithm on the reconstructed particles (e, μ , γ , charged and neurtal hadrons)

CMS DP-2015/044

15/14