

Precision QCD measurements from ALICE using correlation techniques

Dimitar Lubomirov Mihaylov on behalf of the ALICE collaboration LHCP 2021, 10th June

Study of hadron-hadron interaction

Study of hadron-hadron interaction

HAL QCD Collaboration, <u>PTEP 2012 01A105</u> ALICE

Measure C(k*), fix S(r*), study the interaction. ALICE Collaboration, Phys. Lett. B 811 135849, 2020

ALICE

Collision systems and coupled channels Example for the K⁻p system

ALICE Collaboration, <u>arXiv:2105.05683</u>

pp

Collision systems and coupled channels Example for the K⁻p system

Collision systems and coupled channels Example for the K⁻p system

Collision systems and coupled channels Example for the K⁻p system

A unique feature of femtoscopy:

- The direct contribution of inelastic channels is only present in small sources
- Large collision systems are sensitive only to the elastic channel

K⁻p correlations in Pb–Pb collisions Sensitivity to the elastic channel

C(K*)

.3

1.2

1.1

0.9

5

0

(Data-Model)/σ_{stat}

30-40%

50

K⁻p correlations in pp collisions Complementing existing data

K⁻p correlations Improving the theory

ALICE data

PRL 124, 092301, 2020

The "improved" Kyoto model Y. Kamiya et al. Phys.Rev.Lett. 124 13, 2020 1.2 R = 1 fm1.1 $(0.0 \ C(d)) C(d)$ $K^-p + \bar{K}^0 n$ 0.8 $K^- p + \bar{K}^0 n + \pi \Sigma$ 0.7Ful Full without Coulomb 0.6 50100 150200 250300 0 $q \, [\text{MeV}/c]$

 The Kyoto model can be further constrained by the ALICE data

\mathbf{n} pA correlations

Precision data from high-multiplicity pp collisions

16

$p\Lambda$ correlations

Precision data from high-multiplicity pp collisions

ALICE Collaboration.

J. Haidenbauer et al. Eur. Phys. J. A56 91, 2020

S=-2 and S=-3 sector Testing the lattice using $p\Xi$ and $p\Omega$ correlations

- Agreement with lattice predictions
- The lattice disfavours the onset of Ξ particles inside neutron stars³⁾

HAL QCD Collaboration, <u>Nucl.Phys.A 998 121737, 2020</u>
HAL QCD Collaboration, <u>Phys.Lett. B792 284-289, 2019</u>
HAL QCD Collaboration, <u>AIP Conf.Proc. 2130 1, 020002, 2019</u>

- Agreement with lattice predictions
- The lattice disfavours the onset of Ξ particles inside neutron stars³⁾

HAL QCD Collaboration, <u>Nucl.Phys.A 998 121737, 2020</u>
HAL QCD Collaboration, <u>Phys.Lett. B792 284-289, 2019</u>
HAL QCD Collaboration, <u>AIP Conf.Proc. 2130 1, 020002, 2019</u>

- Agreement with lattice predictions
- A new benchmark for theory
- Strong attraction
- A bound state is not observed, but cannot be excluded

300

ALICE

Summary

Thank you for your attention

Using cumulants to access the genuine three-body interaction

BACKUP

A common source Gaussian profile

Phys. Lett. B 811 (2020) 135849

Gaussian source

• Different source size for p-p and p-A pairs

- The Statistical Hadronization Model tells us: c.a. ⅔ of protons and ∧s stem from resonances. The average lifetimes (cт) are: 1.6 fm for X→proton 4.7 fm for X→Λ
- Production through short-lived resonances

A common source The numerical "resonance source model"

Phys. Lett. B 811 (2020) 135849

Gaussian core + resonances

 Common source for p-p and p-Λ pairs. Ones measured (from p-p), it is fixed for ANY baryon-baryon pair!

- The Statistical Hadronization Model tells us: c.a. ⅔ of protons and ∧s stem from resonances. The average lifetimes (cт) are: 1.6 fm for X→proton 4.7 fm for X→Λ
- Production through short-lived resonances

The source function: Summary Gaussian core + resonances with m_{τ} scaling

- **Fit the p-p** result with a power law
- r_{core} for each system to be determined by the 3σ band of the fit (green band)
- Fix the value of r_{core} of each particle species based on their $\langle m_T \rangle$
- Further investigations ongoing

The r_{core} is NOT the same as the effective source size r₀!

K⁻-p correlations in pp collisions Direct sensitivity to the inelastic channels

Femtoscopy data PRL 124, 092301 (2020)

ALICE

Scattering data Nuclear Physics A 881 (2012) 98–114

Chiral effective field theory (χEFT) *Experimental constraints*

- Coupled channel dynamics ($p\Lambda \leftrightarrow N\Sigma$).
- Existing constraints from scattering and hypernuclei data. Limited statistics, in particular related to NΣ coupling and 3-body forces.

NLO13 has slightly stronger 2-body attraction in vacuum

NLO19 has stronger 3-body

repulsion in-medium

29

μ-Λ correlation function *Overview*

The femto era begins!

