

Higgs CP studies at ATLAS+CMS

9th Large Hadron Collider Physics (LHCP2021)

María Moreno Llácer (IFIC, CSIC-Uni. Valencia), on behalf of ATLAS and CMS Collaborations

Testing the CP nature of the Higgs boson

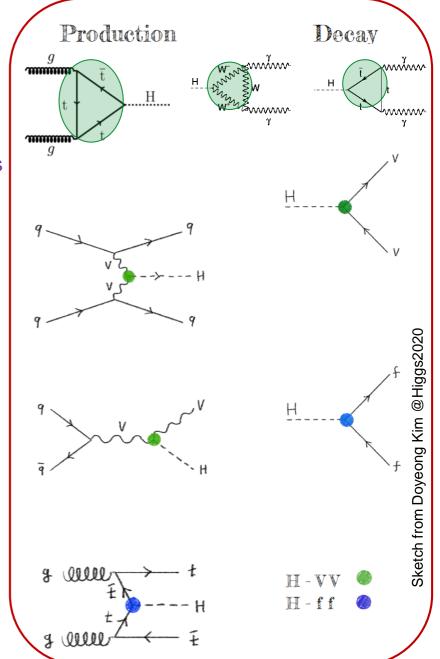
Understanding the CP property of the Higgs boson is one of the most important topics in particle physics today.

In the Standard Model:

• the only source of CP violation comes from CKM phase

 the Higgs boson has scalar (CP-even) couplings to SM particles
 → Need to test these since any CP-odd contribution would be a sign of BSM!

Probing couplings to bosons (HVV and Hgg):

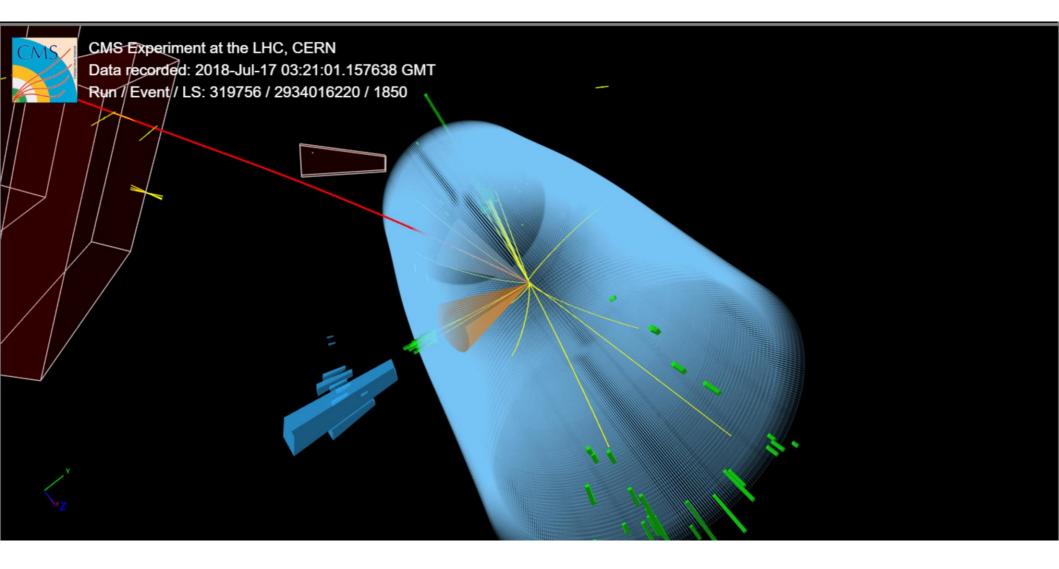

- decay channels with clean signature ($H \rightarrow ZZ^* \rightarrow 4I$,
- $H \rightarrow WW^* \rightarrow e_{\nu} \mu_{\nu}$) allow to study ggH production mode
- \bullet using VBF production: $H{\rightarrow}\tau\tau$ is essential due to its high BR

• using $H \rightarrow VV$ decay: $H \rightarrow ZZ^* \rightarrow 4I$ is the most sensitive channel due to its clean signature and absence of missing neutrinos

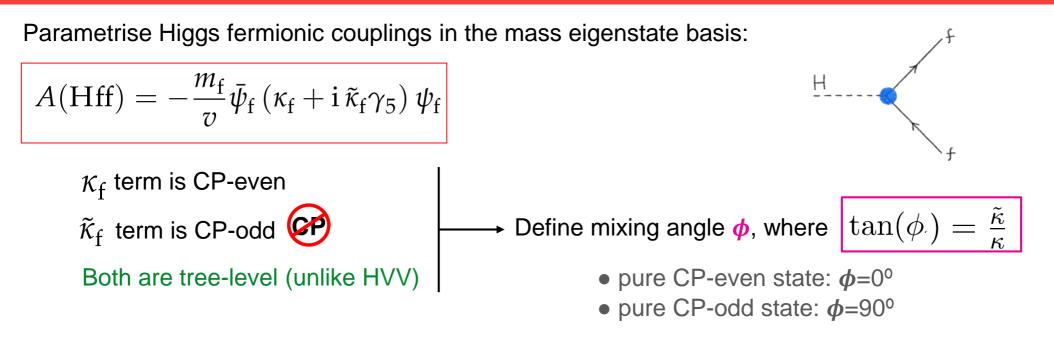
to fermions (Hff):

- Htt: using ttH production to probe top Yukawa
- HTT: recently studied in H \rightarrow TT decay

CP-odd contributions in HVV couplings (from dim-6 operators) are suppressed with a $1/\Lambda^2$.


LHC Run2 results testing the CP nature of the Higgs boson

Direct searches	ATLAS	CMS
H→4I (all prod. modes: H+2j, VH, ttH)	{HVV, Hgg, Htt} EFT coefficients (Warsaw basis) <i>reinterpretation of cross-section measurements</i> * EPJC(2020)80:957, full Run2	HVV, Hgg, Htt anomalous couplings & EFT coefficients (Higgs and Warsaw basis) using MELA disc. arXiv:2104.12152 (sub. to PRD), full Run2
H→WW*→eνµν (prod. mode: H+2j)	Hgg anomalous couplings HC model (mass basis), using signed $\Delta \phi_{jj}$ <u>ATLAS-CONF-2020-055</u> , 36 fb ⁻¹	
Η→ττ	HVV anomalous couplings using <i>O_{optimal}</i> (CP-odd only, targets VBF) <u>PLB805 (2020)135426</u> , 36 fb ⁻¹ (Hττ <u>ATL-PHYS-PUB-2019-008</u> , HL-LHC prospects)	HVV anomalous couplings using MELA disc. PRD100,112002(2019), 36 fb ⁻¹ Hττ $ \phi < 36^{\circ} @95\%$ CL, using ϕ_{CP} , VBF+ggH+VH Pure CP-odd coupling excluded > 3σ <u>CMS-PAS-HIG-20-006</u> , full Run2
ttH (H→γγ)	Htt Higgs Charact. model, $ \phi < 43^{\circ} @95\%$ CL Pure CP-odd coupling excluded > 3σ <u>PRL125,061802(2020)</u> , full Run2	Htt using MELA disc., $ \phi < 55^{\circ}$ @95%CL Pure CP-odd coupling excluded > 3σ <u>PRL125,061801(2020)</u> , full Run2


*ATLAS-CONF-2019-029: interpretations in $H \rightarrow \gamma \gamma$ decay mode

→ This talk will focus on the **new results** (since LHCP2020)

Probing Hττ **coupling structure**

Probing Higgs-fermion interactions

EXPERIMENTAL RESULTS

Ηττ

 $H \rightarrow \tau \tau$: first direct measurement of the CP nature of the tau Yukawa coupling, by CMS (next slides)

Htt

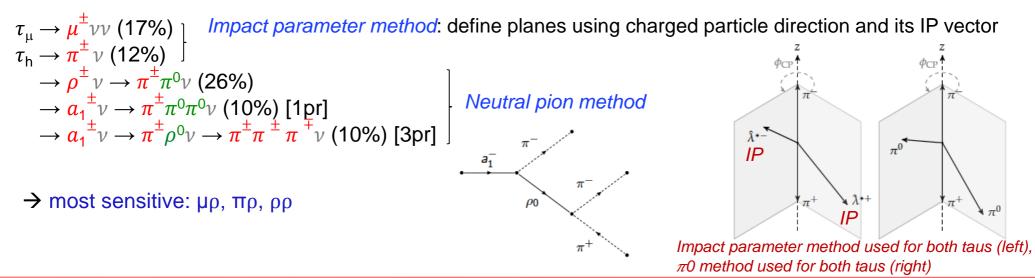
- ttH (H $\rightarrow\gamma\gamma$): first experimental results last year ATLAS & CMS
- Combination of H \rightarrow 4I (ggH & ttH) with ttH (H $\rightarrow\gamma\gamma$), by CMS (next slides)

H_{ττ} coupling structure: methodology

Using full Run 2 and exploiting $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ ch. (50% of the decay modes)

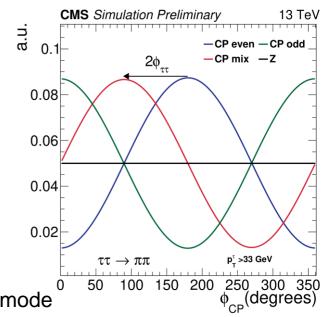
CP discriminant: ϕ_{CP}

(angle between the τ decay planes in the Higgs rest frame) \rightarrow The mixing angle $\phi_{\tau\tau}$ can be extracted by fitting this function:


$$rac{d\Gamma}{d\phi_{
m CP}} \propto \cos(\phi_{
m CP} - 2\phi_{ au au})$$

assuming CP-even (SM) HVV couplings

Event reconstruction:


Dedicated algorithms and MVAs to reconstruct τ_h and distinguish its decay mode Several channels ($\mu, \pi, \rho, a_1^{1pr}, a_1^{3pr}$)×($\pi, \rho, a_1^{1pr}, a_1^{3pr}$)

 τ planes can't be reconstructed exactly \rightarrow use approximations

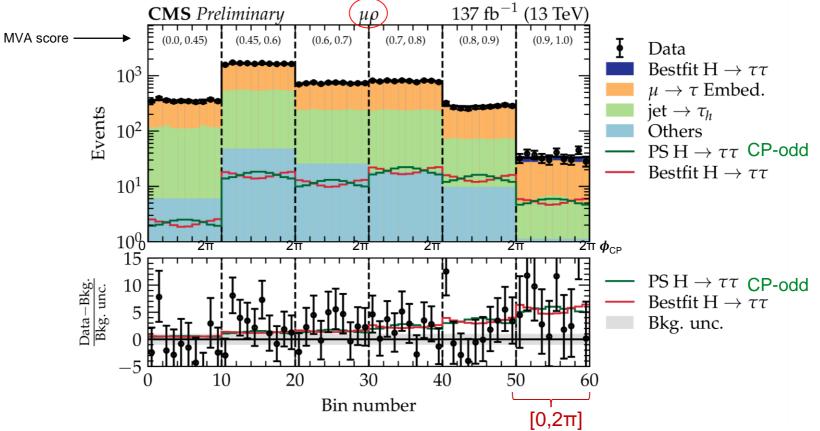
07/06/21 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

CMS-PAS-HIG-20-006

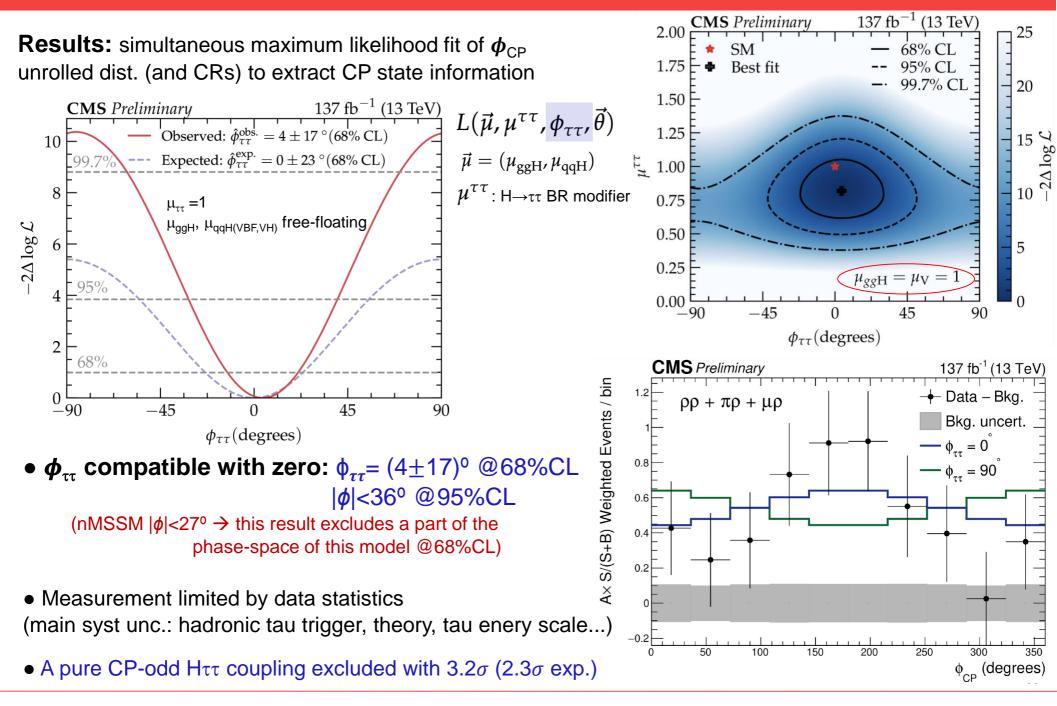
H_{ττ} coupling structure: analysis strategy

Main backgrounds: two genuine τ_h and jets faking τ_{h} .

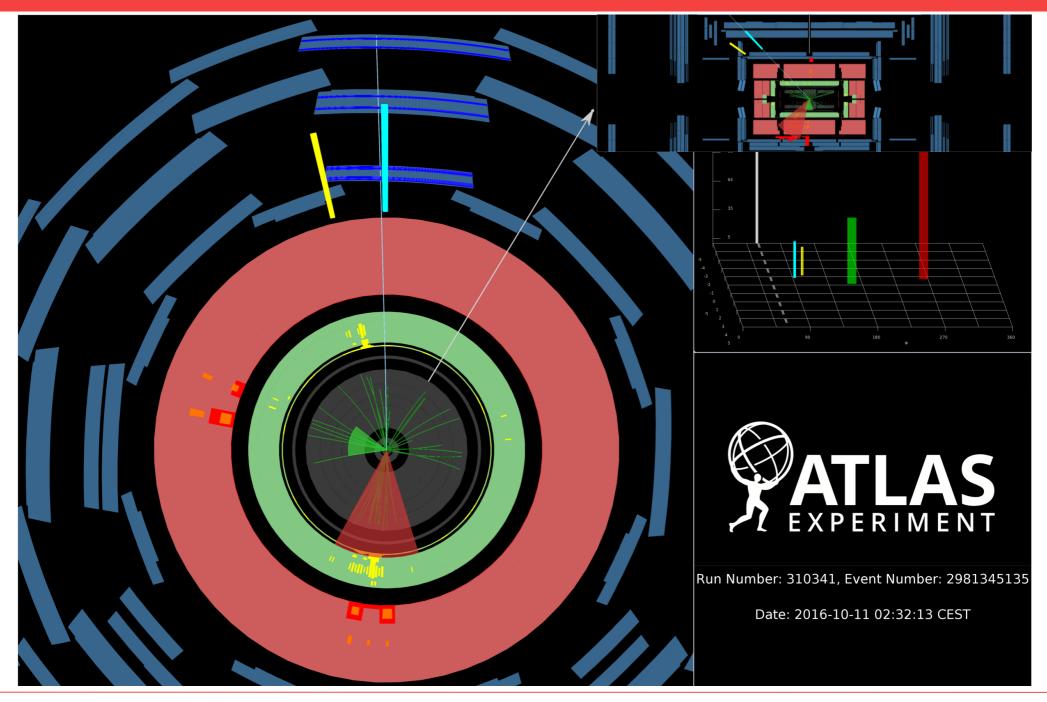
estimated with data-driven methods (embedding and fake factor, resp.)

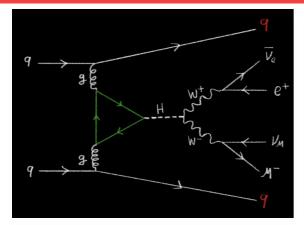

Event categorisation:

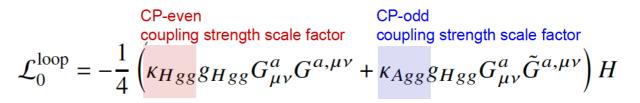
• Signal vs background separation using multi-class BDT (DNN) for $\tau_h \tau_h (\tau_\mu \tau_h)$ ch.:


includes invariant masses, kinematic and angular variables (e.g. $m_{\tau\tau} p_T$'s , m_{jj} , N_{jets} , etc.)

• 3 categories: Higgs (VBF + ggH + VH), genuine τ_h (Z \rightarrow TT embedded) and fake τ_h


• For events classified as Higgs, ϕ_{CP} unrolled distribution in BDT/DNN score windows (for each decay mode) used to extract CP information


Η_{ττ} coupling structure: results


Probing Hgg coupling structure in $H \rightarrow WW^* \rightarrow e\nu\mu\nu + 2$ jets

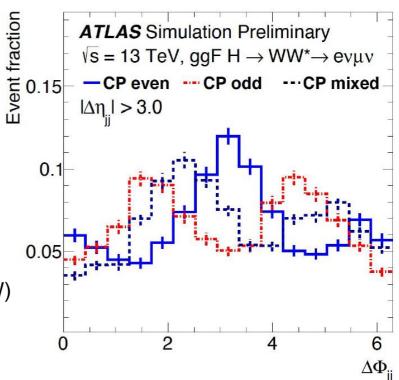
Probing Hgg coupling structure in $H \rightarrow WW^* \rightarrow e\nu\mu\nu + 2$ jets

ATLAS-CONF-2020-055 Higgs boson produced through gluon fusion (+2 jets) Constrain the properties of the **effective Higgs-gluon interaction** Higgs Characterization model provides EFT framework

CP discriminant: $\Delta \phi_{ii}$

(signed azimuthal angle difference of the two jets)

$$\Delta \Phi_{jj} = \begin{cases} \phi_{j_1} - \phi_{j_2} \text{ if } \eta_{j_1} > \eta_{j_2} \\ \phi_{j_2} - \phi_{j_1} \text{ otherwise} \\ < \Delta \phi_{jj} - \pi > != 0 \text{ would indicate CP-mixed state} \end{cases}$$


Event selection and categorisation:

Preselection: 2 OS DF leptons, \geq 2 jets + cuts on kinematics of di-lepton system, ΔR_{ii} , veto b-jets

BDTs to further separate signal from main bkgs. (top, $Z \rightarrow \tau \tau \& WW$) - trained using kinematics of di-lepton system and angular distances between leptons and jets

- low BDT region used to constrain normalisation of main bkgs.

assuming CP-even (SM) HVV couplings

Probing Hgg coupling structure in $H \rightarrow WW^* \rightarrow e\nu\mu\nu + 2$ jets

Events / bin

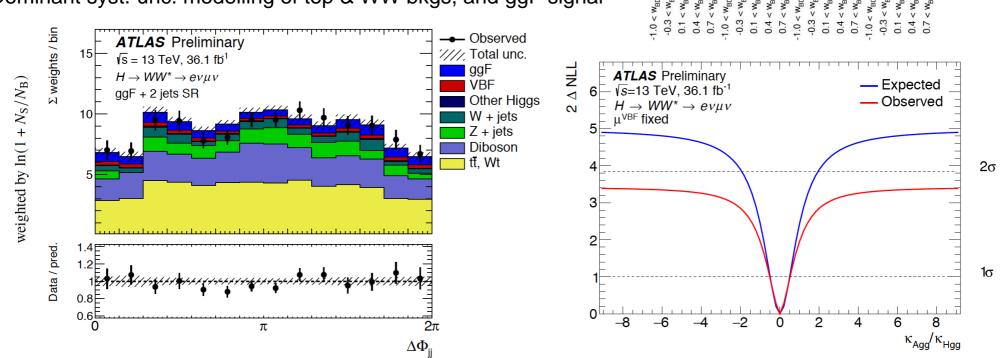
Data / pred

10

TLAS Preliminary

√s = 13 TeV, 36,1 fb¹

 $WW^* \rightarrow ev\mu v$


aaF + 2 jets SF

Results: fit to $\Delta \phi_{jj}$ observable in 12 event cat (3 BDT x 4 $|\Delta \eta_{jj}\rangle$) Bkgs. norm. constrained with dedicated CR & low BDT bins

shape+rate fit (constraining signal norm. to model predictions) [if signal norm. is free, data not sensitive enough to give 68%CL]

$$\kappa_{Agg} / \kappa_{Hgg} = 0.0 \pm 0.4 (\text{stat.}) \pm 0.3 (\text{syst.})$$

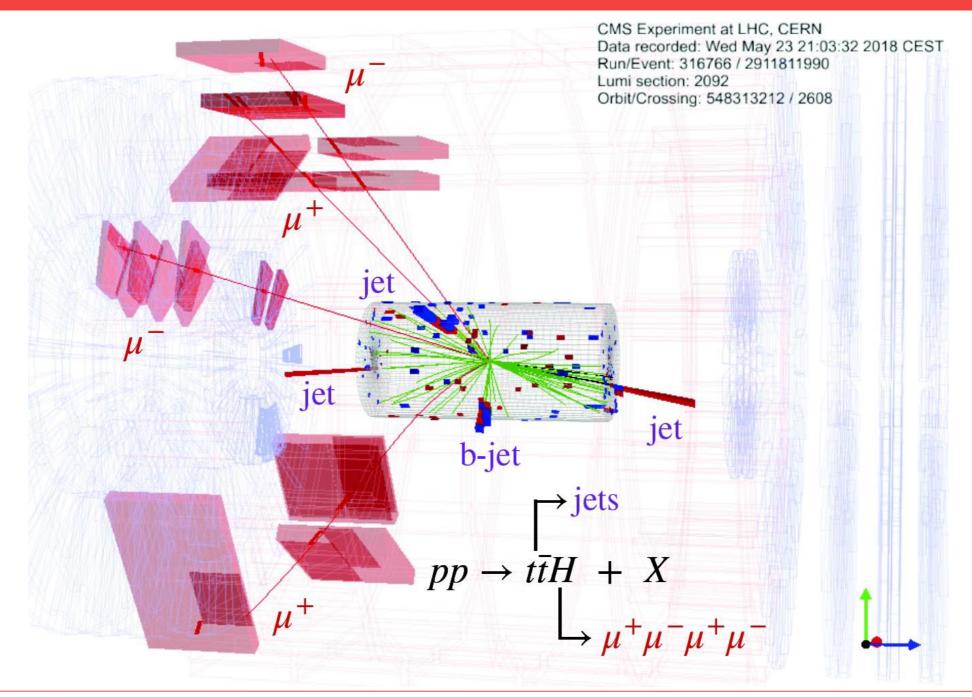
Stat. limited (only a fraction of LHC Run 2 dataset used) Dominant syst. unc: modelling of top & WW bkgs, and ggF signal

First measurement of polarisation effects in HVV also presented in this note (using VBF production)!

07/06/21 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

ATLAS-CONF-2020-055

Total unc.


Other Higgs

Z + jets Diboson

tť, Wt ggF \times 50 VBF \times 50

ggF

VBF

All production modes of H \rightarrow 4l (2e2 μ , 4 μ , 4e) assessed \rightarrow test HVV, Hgg & Htt interactions Dedicated measurement \rightarrow MC simulation of new physics, including acceptance and efficiency effects Amplitudes parametrised with anomalous couplings \rightarrow translated to EFT coef. (Higgs and Warsaw bases)

Generic HV₁V₂ scattering amplitude $V_1V_2 = ZZ, WW, Z\gamma, \gamma\gamma$ or gg

$$\frac{\text{tree-level SM-like anomalous couplings}}{\text{SM-like anomalous couplings}} = M_{V1}^{CP-odd} \text{ anomalous coupling anomalous coupling anomalous coupling anomalous coupling of the set of the set$$

Generic Hff scattering amplitude

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v} \bar{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i}\,\tilde{\kappa}_{\mathrm{f}}\gamma_{5}\right) \psi_{\mathrm{f}}$$

Event categorisation

Using kinematic discriminants, calculated with matrix element likelihood approach (MELA), sensitive to distinguish each production mode (S-vs-B), and also other selection requirements (p_{T}^{4l})

 \rightarrow two indep. sets of event categories: scheme 1: targets Hgg and Htt (7 categories) scheme 2: targets HVV (6 categories)

→ coupling ratios can be defined: $f_{ai}^{VV} = \frac{|a_i^{VV}|^2 \alpha_{ii}^{(2e2\mu)}}{\sum_i |a_i^{VV}|^2 \alpha_{ii}^{(2e2\mu)}} \operatorname{sign}\left(\frac{a_i^{VV}}{a_1}\right)$

 \rightarrow two type of discriminants:

$$\mathcal{D}_{\mathrm{alt}}\left(\Omega\right) = rac{\mathcal{P}_{\mathrm{sig}}\left(\Omega
ight)}{\mathcal{P}_{\mathrm{sig}}\left(\Omega
ight) + \mathcal{P}_{\mathrm{alt}}\left(\Omega
ight)}$$

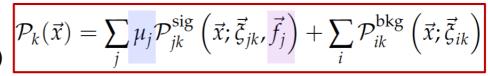
 $\mathcal{D}_{int}(\Omega) = \frac{\mathcal{P}_{int}(\Omega)}{2\sqrt{\mathcal{P}_{sig}(\Omega) \ \mathcal{P}_{alt}(\Omega)}} \quad \text{to assess interference btw. two} \\ \text{model predictions (eg. CP-even/odd)}$

to separate S-vs-B or SM-vs-BSM couplings

 $f_{a3}^{ggH} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_2^{gg}|^2} \operatorname{sign}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$

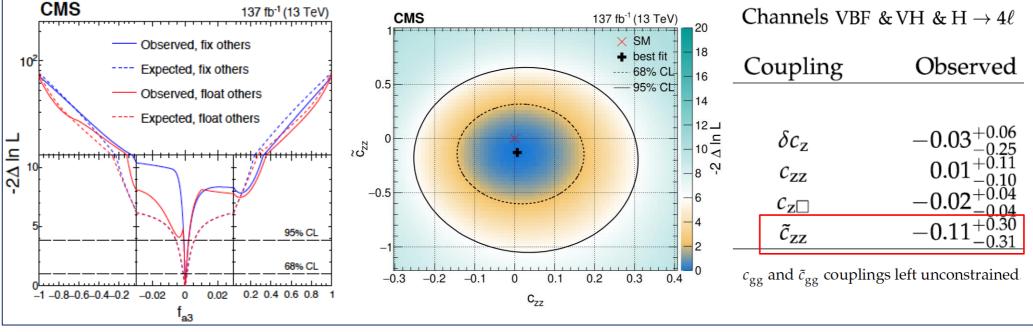
 $f_{\rm CP}^{\rm Hff} = \frac{|\tilde{\kappa}_{\rm f}|^2}{|\kappa_{\epsilon}|^2 + |\tilde{\kappa}_{\epsilon}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_{\rm f}}{\kappa_{\epsilon}}\right)$

María Moreno Llácer - Higgs CP studies at ATLAS+CMS 07/06/21



Results:

- Perform maximum likelihood fits to to extract the coupling ratios f_i (and μ_i)

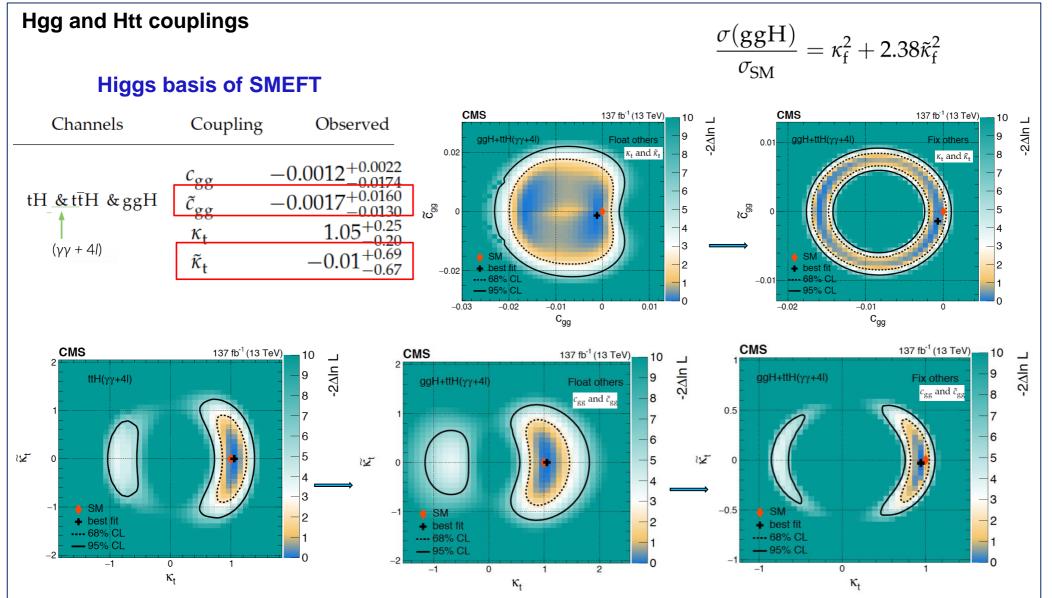

Coupling amplitude decomposition

- 3 types of scans:
 - Single parameter scans with other couplings fixed
 - Simultaneous scans of multiple anomalous couplings
 - 2D scans

- Translate couplings ratios f_i into EFT coefficients

Higgs basis of SMEFT 137 fb⁻¹ (13 TeV) Channels VBF & VH

HVV couplings (within SU(2)xU(1) symmetry)


Results consistent with SM Higgs

07/06/21

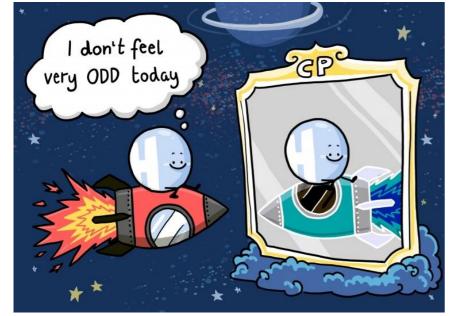
María Moreno Llácer - Higgs CP studies at ATLAS+CMS

arXiv:2104.12152

arXiv:2104.12152

Results consistent with SM Higgs

Summary


oom meetin

Understanding the Higgs boson's CP properties is a crucial aspect in particle physics today.

ATLAS and CMS have looked for BSM contributions and set limits on CP anomalous couplings in the Higgs boson interactions with vector bosons (HVV), gluons (Hgg), and fermions (Hff). Results are limited by statistical unc. and, so far, they are consistent with SM. Purely CP-odd fermionic and bosonic Higgs couplings already excluded, but admixtures still possible.

Need to keep exploring CP violation in Higgs couplings.

A huge improvement is expected with more data from upcoming future LHC runs For the moment, neglecting effect of operators on backgrounds...

⁽image: DESY/designdoppel)

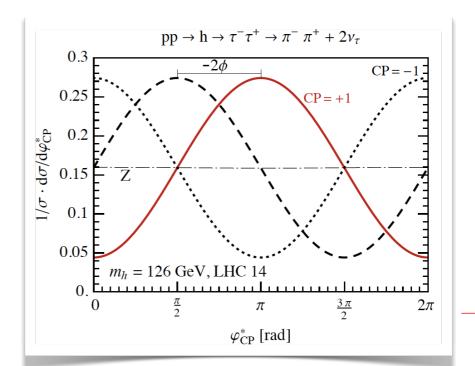
Discussions between theorists and experimentalists are very much appreciated !

THANKS FOR YOUR ATTENTION

maria.moreno.llacer@cern.ch

$H_{\tau\tau}$ coupling structure

^{**D**} Higgs decay probability $(\beta_{\tau} = 1)$:


$$\Gamma_{h \to \tau^- \tau^+} \sim 1 - \vec{s}_z^- \vec{s}_z^+ + \cos(2\phi_h)(\vec{s}_T^- \vec{s}_T^+) - \sin(2\phi_h)[(\vec{s}_T^- \times \vec{s}_T^+) \cdot \hat{k}^{\tau^-}]$$

$$\widehat{\text{CP even}} \qquad \widehat{\text{CP odd}}$$

- $\vec{s}_{z,T}^{\pm}$ longitudinal, transverse vectors of τ^{\pm} spin in its rest frame with respect to $\hat{k}^{\tau^{-}} = \hat{e}_{z}$
- **D** Higgs CP information encoded in the transverse component

$$\Box \quad \frac{1}{\Gamma} \frac{d\Gamma(h \to \pi^+ \pi^- + 2\nu)}{d\varphi_{CP}^*} = \frac{1}{2\pi} \left[1 - \frac{\pi^2}{16} \cos(\varphi_{CP}^* - 2\phi_h) \right]$$

- $2\phi_h$ can be determined from the shift of the fitted φ_{CP} distribution with respect to the red curve for which $\phi_h = 0$.
- Precision on ϕ_h depends on the number of events and the size of the amplitude

CMS-PAS-HIG-20-006

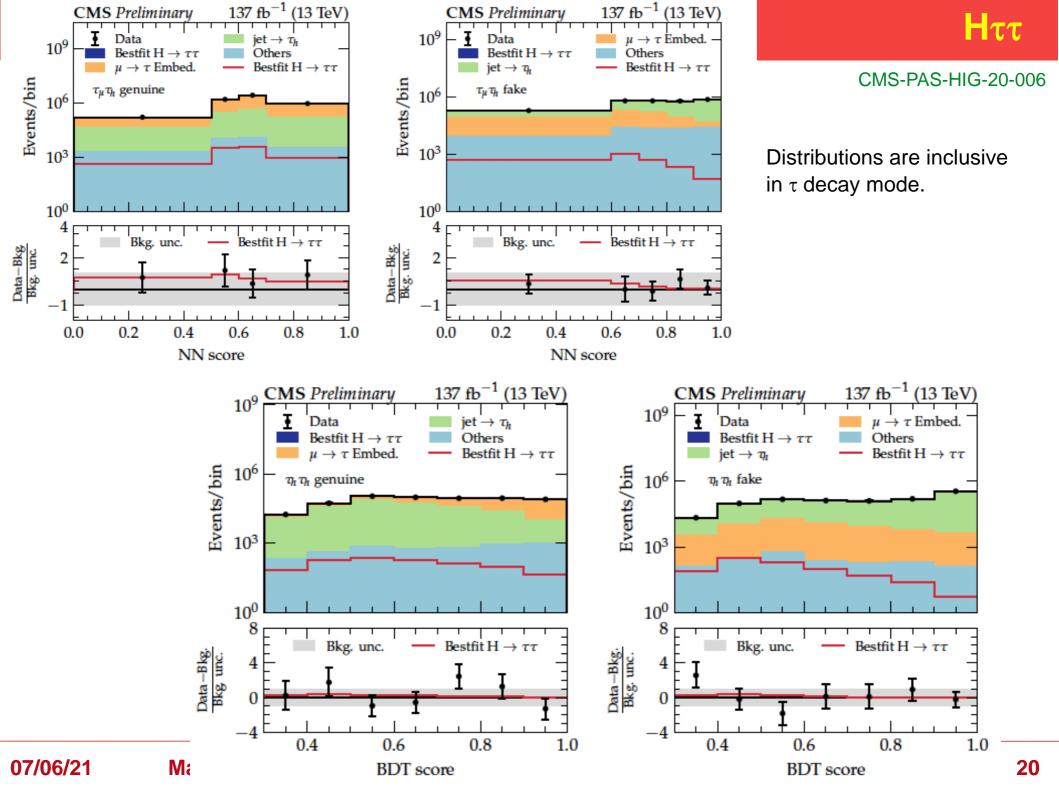

Backgrounds

Table 3: The different sources of di- τ backgrounds are depicted on the rows and columns. The entries in the table represent the possible di- τ background contribution from different processes and misidentifications and encapsulate the different experimental techniques that are deployed to estimate the background contributions. Processes involving two prompt leptons, i.e. two electrons, muons, or and electron and a muon, are not considered in this analysis.

	genuine $\tau_{\rm h}$	$jet \rightarrow \tau_h$	lepton $\rightarrow \tau_{h}$
genuine τ	τ -Embedding		
$jet \rightarrow \tau$	Fake Factor	Fake Factor	
lepton $\rightarrow \tau$	Simulation	Fake Factor	Simulation
prompt lepton	Simulation	Fake Factor	Simulation

Table 4: Input variables to the MVA discriminants for the $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ channel. For all variables only the visible decay products of the τ leptons are implied, except for the $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ mass, for which the SVFIT algorithm is used.

Input variables to MVAs	Observable	$\tau_{\mu}\tau_{h}$	$\tau_{\rm h} \tau_{\rm h}$
•	$p_{\rm T}$ of leading $\tau_{\rm h}$ or τ_{μ}	✓	✓
The training is northerneed in alusively	$p_{\rm T}$ of (trailing) $\tau_{\rm h}$ for $\tau_{\mu} \tau_{\rm h} (\tau_{\rm h} \tau_{\rm h})$ channel	\checkmark	×
The training is performed inclusively	$p_{\rm T}$ of visible di- τ	\checkmark	\checkmark
for all the τ decay modes.	$p_{\rm T}$ of di- $\tau_{\rm h}$ + $p_{\rm T}^{\rm miss}$	×	\checkmark
	$p_{\mathrm{T}} ext{ of } \mu + au_{\mathrm{h}} + p_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	×
	Visible di- τ mass	\checkmark	\checkmark
	$\tau_{\mu} \tau_{h}$ or $\tau_{h} \tau_{h}$ mass (using SVFIT)	\checkmark	\checkmark
	Leading jet p _T	\checkmark	\checkmark
	Trailing jet p _T	\checkmark	×
	Jet multiplicity	\checkmark	\checkmark
	Dijet invariant mass	\checkmark	\checkmark
	Dijet p _T	\checkmark	×
	Dijet $ \Delta \eta $	\checkmark	×
	$p_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark

CMS-PAS-HIG-20-006

Decay mode	Expected sensitivity
$\tau_{\mu}\tau_{h}$	1.47
μρ	1.16
$\mu\pi$	0.71
$\mu a_1^{3 \text{pr}}$	0.51
$\mu a_1^{1 pr}$	0.24
$ au_{\rm h} au_{\rm h}$	1.8
ρρ	1.09
$ ho\pi$	1.04
$\rho a_1^{3 pr}$	0.64
$\pi\pi$	0.38
$\pi a_1^{3 \text{pr}}$	0.46
$a_1^{r_1}\rho$ and $a_1^{r_1}a_1^{r_1}$	0.30
$\pi a_1^{1 pr}$	0.23
$a_1^{3pr}a_1^{3pr}$	0.13
$a_1^{3pr}a_1^{1pr}$	0.11
Combined	2.33

Higgs CP

 With all final state particles reconstructed, we can perform a Matrix Element based analysis of the underlying Higgs CP mixing angle Φ. The Higgs decay amplitude can be expressed as

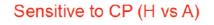
$$\mathcal{M}|^2 \propto A + B\cos(2\phi) + C\sin(2\phi),$$

$$\propto I_1 \cos^2(\phi) + I_2 \sin(\phi) \cos(\phi) + I_3 \sin^2(\phi)$$

- Two observables can be reconstructed per event for the CP test
 - ✤ Optimal Observable (M. Davier et. al, Phys. Lett. B306,1993, 411): OO = I₂/I₁
 - * ME angle $\Delta \Phi_{\rm ME}$, defined as

$$|\mathcal{M}|^2 \propto A + \sqrt{B^2 + C^2} \cos(\Delta \phi_{ME} - 2\phi)$$
$$\cos(\Delta \phi_{ME}) = \frac{B}{\sqrt{B^2 + C^2}}, \quad \sin(\Delta \phi_{ME}) = \frac{C}{\sqrt{B^2 + C^2}}$$

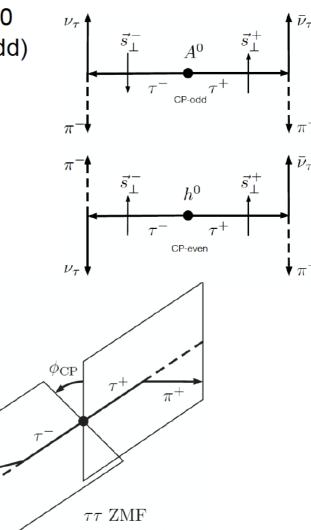
At low mixing angle values, the two perform similarly, while in high values of $\Phi,\,\Delta\Phi_{\rm ME}$ is better


CP test in $H \rightarrow \tau \tau$ decay

CP-odd Yukawa coupling can enter the Lagrangian at dim-4, thus sensitive at tree-level rather than with the dim-6 operators in HVV

 $-g_{\tau} (\cos \phi \overline{\tau} \tau + \sin \phi \overline{\tau} i \gamma_5 \tau) h \qquad \Phi \text{ is the mixing angle. } \Phi = 0$ $(\Phi = \pi/2) \text{ means SM (CP odd)}$

 CP of Hττ coupling can be distinguished by the transverse tau spin correlations


$$\Gamma(H, A \to \tau^- \tau^+) \sim 1 - s_z^{\tau-} s_z^{\tau+} \pm s_T^{\tau-} s_T^{\tau^+}$$

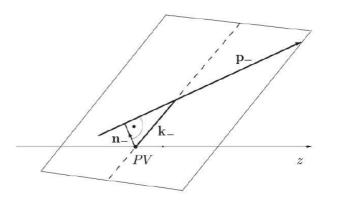
• For example, with the $\tau \rightarrow \pi v$ decay, one can look at the angle between tau decay planes to extract Φ :

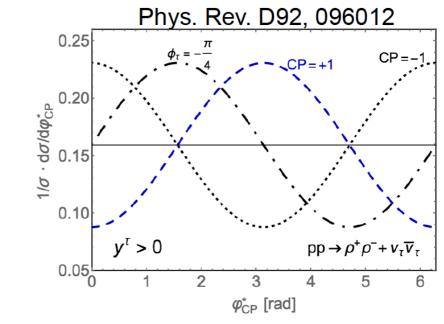
$$\frac{d\Gamma(h \rightarrow \tau\tau \rightarrow \pi^{+}\pi^{-} + 2\nu)}{d\phi_{CP}} \propto 1 - \frac{\pi^{2}}{16}\cos(\phi_{CP} - 2\phi)$$

It is experimentally challenging because the neutrinos are not reconstructed

CP test in $H \rightarrow \tau \tau$ decay

• There are two methods to extract CP from $H \rightarrow \tau \tau$ decay:

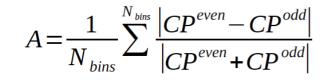

Impact Parameter (IP) method:


- Approximately reconstruct the tau decay plane from its leading track and IP
- Best for the $\tau \rightarrow \pi v$ decay. The analyzing power is compromised for other tau decays

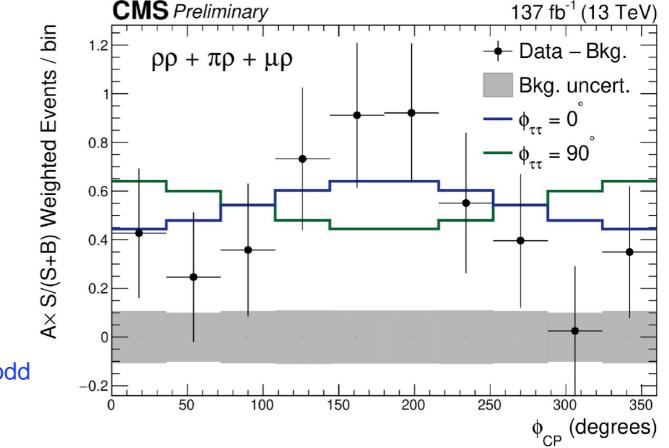
Using the $\tau \rightarrow \rho \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ decay:

- The tau decay plane can be approximately reconstructed by the track and neutral pion
- However, the relative energy of π[±], π⁰ need to be classified in order to maximize the analyzing power
- In order to use the two methods, the tau decay modes (substructure) need to be well differenciated (next few slides)

A few extra references: EPJC 74 (2014) 3164, Phys. Rev. D88 076009, Phys. Lett. B579 (2004) 157, Phys. Lett. B543 (2002) 227


6

24


H_{ττ} coupling structure: ϕ_{CP} plot

The results from the most sensitive channels are weighted and combined into a plot of $\phi_{ ext{CP}}$

Each BDT/NN score window is weighted by A*S/(S+B), being A the "average asymmetry":

Background is subtracted from data. (Grey band: unc. on subtracted bkg.)

H $\rightarrow \tau\tau$ decays consistent with SM. CP-even case preferred over CP-odd case with 3.2 σ (2.3 σ expected).

ggH+2 jets with H \rightarrow WW* \rightarrow e ν µ ν

Table 3: Event selection criteria used to define the signal regions for the ggF + 2 jets and VBF event categories.

	ggF + 2 jets	VBF			
	Two isolated, different-flavour lepton	s ($\ell = e, \mu$) with opposite charge			
Preselection	$p_{\rm T}^{\rm lead} > 22 \text{ GeV}, p_{\rm T}^{\rm su}$	$^{blead} > 15 \text{ GeV}$			
rieselection	$m_{\ell\ell} > 10$	GeV			
	$N_{\rm jet} \ge$	2			
	$N_{b-\text{jet},(p_{\rm T}>20\text{ GeV})} = 0$				
	$m_{\tau\tau} < 66 \text{ GeV}$				
Background rejection	$\Delta R_{jj} > 1.0$				
Dackground rejection	$p_{\mathrm{T},\ell\ell} > 20 \text{ GeV}$	central jet veto			
	$m_{\ell\ell} < 90 \text{ GeV}$	outside lepton veto			
	$m_{\rm T} < 150 { m ~GeV}$				
BDT input variables	$m_{\ell\ell}, m_{\mathrm{T}}, p_{\mathrm{T},\ell\ell}, \Delta\phi_{\ell\ell}$	$m_{jj}, \Delta Y_{jj}, m_{\ell\ell}, m_{\mathrm{T}}, \Delta \phi_{\ell\ell}$			
BD1 input variables	$\min \Delta R(\ell_1, j_i), \min \Delta R(\ell_2, j_i)$	$\sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell,j}, p_{\mathrm{T}}^{\mathrm{tot}}$			

Control region	ggF + 2 jets	VBF		
top CR	$N_{b-\text{jet},(p_{\text{T}}>30\text{ GeV})} = 1$	$N_{b-\text{jet},(p_{\text{T}}>20 \text{ GeV})} = 1$		
$Z \rightarrow \tau \tau CR$	$ m_{\tau\tau} - m_Z \le 25 \text{ GeV}$			
$L \rightarrow W C K$	$p_{T,\ell\ell}$ requirement is omitted	$m_{\ell\ell} < 80 \text{ GeV}$		
WW CR	$m_{\ell\ell} > 90 \text{ GeV}$			
WW CK	$m_{\rm T}$ requirement is omitted			

ggH+2 jets with H \rightarrow WW* \rightarrow e ν µ ν

Table 7: Breakdown of the main contributions to the total uncertainty on $\kappa_{Agg}/\kappa_{Hgg}$ based on the fit that exploits both shape and rate information. Individual sources of systematic uncertainty are grouped into either the theoretical or the experimental uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

Source	$\Delta \left(\kappa_{Agg} / \kappa_{Hgg} \right)$
Total data statistical uncertainty	0.4
SR statistical uncertainty	0.33
CR statistical uncertainty	0.10
MC statistical uncertainty	0.14
Total systematic uncertainty	0.28
Theoretical uncertainty	0.23
Top quark bkg.	0.15
ggF signal	0.14
$WZ, ZZ, W\gamma, Z\gamma$ bkg.	0.06
WW bkg.	0.06
Z/γ^* bkg.	0.016
VBF bkg.	0.015
Experimental uncertainty	0.21
<i>b</i> -tagging	0.16
Modelling of pile-up	0.10
Jets	0.07
Misidentified leptons	0.04
Luminosity	0.034
Total	0.5

07/06/21

ggH+2 jets with H \rightarrow WW* \rightarrow e ν µ ν

$$\mathcal{L}_{0}^{\text{loop}} = -\frac{1}{4} \begin{pmatrix} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \kappa_{gg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} \end{pmatrix} H$$

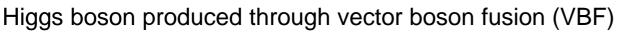

$$\mathcal{L}_{0}^{\text{loop}} = -\frac{1}{4} \left(\kappa_{gg} \cos(\alpha) g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \kappa_{gg} \sin(\alpha) g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} \right) H$$

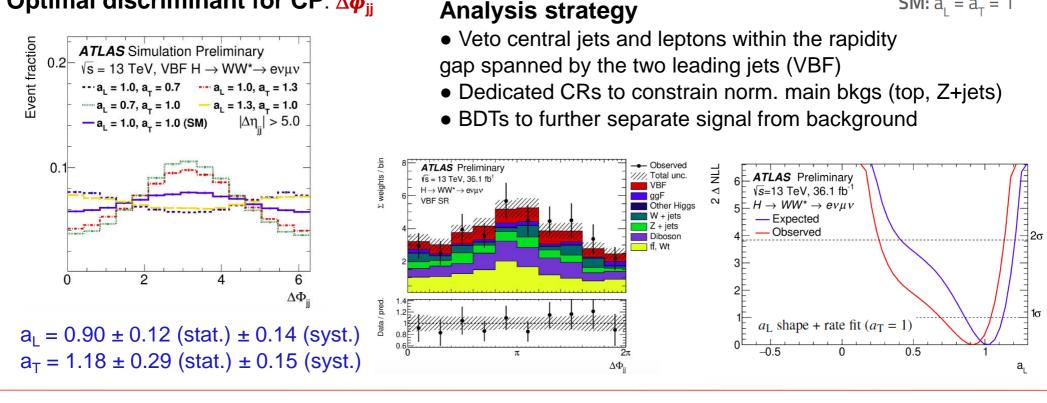
Table 6: Post-fit event yields in the signal and control regions obtained from the study of the signal strength parameter $\mu^{ggF+2jets}$. The quoted uncertainties include the theoretical and experimental systematic sources and those due to sample statistics.

Process	Top CR	WW CR	$Z \rightarrow \tau \tau CR$	SR
ggF + 2 jets	20 ± 20	< 0.1	10 ± 10	60 ± 80
ggF + 0/1 jets	4 ± 1	< 0.1	3 ± 1	40 ± 20
VBF	8 ± 1	< 0.1	7 ± 1	70 ± 10
Other Higgs	6.0 ± 0.3	2.4 ± 0.1	20 ± 4	26 ± 1
$WZ, ZZ, W\gamma, Z\gamma$	40 ± 30	100 ± 30	120 ± 50	240 ± 80
$t\overline{t},Wt$	17800 ± 200	3100 ± 500	390 ± 60	2300 ± 300
W + jets	600 ± 200	140 ± 30	90 ± 20	390 ± 80
WW	180 ± 80	1400 ± 500	200 ± 70	1200 ± 400
Z + jets	220 ± 30	16 ± 3	1960 ± 70	1000 ± 100
Observed	18886	4778	2800	5209

07/06/21

VBF H \rightarrow WW* \rightarrow (evµv): polarisation measurement in HVV

- HVV vertex present in production and decay
- access to Higgs coupling to long. and transv. polarized W and Z bosons
- effective lagrangian given by:


$$\mathcal{L} = \kappa_{VV} \left(\frac{2m_W^2}{\nu} H W_{\mu}^+ W^{-\mu} + \frac{m_Z^2}{\nu} H Z_{\mu} Z^{\mu} \right) - \frac{\varepsilon_{VV}}{2\nu} \left(2H W_{\mu\nu}^+ W^{-\mu\nu} + H Z_{\mu\nu} Z^{\mu\nu} + H A_{\mu\nu} A^{\mu\nu} \right) \quad \text{with} \quad \kappa_{VV} \simeq a_{\rm L},$$

$$\varepsilon_{VV} \simeq 0.5 \cdot (a_{\rm T} - a_{\rm L})$$

SM

BSM

Optimal discriminant for CP: $\Delta \phi_{ii}$

ATLAS-CONF-2020-055

 $a_{\rm L} = \frac{g_{HV_{\rm L}}V_{\rm L}}{g_{HVV}}, \ a_{\rm T} = \frac{g_{HV_{\rm T}}V_{\rm T}}{g_{HVV}}$

SM: a₁ = a₇ = 1

María Moreno Llácer - Higgs CP studies at ATLAS+CMS

07/06/21

CP parametrisations to probe HVV and Hgg couplings

ATLAS parametrisation

• Lagrangian in Higgs characterisation framework

$$\mathcal{L}_{eff} = H \left\{ c_{\alpha} \kappa_{\rm SM} \left[\frac{1}{2} \frac{2m_V^2}{v} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu} W^{\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{1}{2} \frac{1}{\Lambda} s_{\alpha} \kappa_{AWW} W_{\mu\nu}^+ \tilde{W}^{-\mu\nu} \right\}$$
$$\mathcal{L}_0^{\rm loop} = -\frac{1}{4} \left(\kappa_{Hgg} g_{Hgg} G^a_{\mu\nu} G^{a,\mu\nu} + \kappa_{Agg} g_{Hgg} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) H$$

- k_{AVV}/k_{HVV} or similar extracted from the fit
- Other parametrisation in VBF $H\to\tau\tau$ which has CP-odd contribution parametrised by \tilde{d}

$$ilde{d} = rac{1}{4} rac{v}{\Lambda} rac{k_{AVV}}{k_{SM}} an lpha$$

CMS parametrisation

Scattering amplitude:

$$\begin{split} A(\mathrm{HVV}) &= \frac{1}{v} \left[a_1^{\mathrm{VV}} + \frac{\kappa_1^{\mathrm{VV}} q_{\mathrm{V1}}^2 + \kappa_2^{\mathrm{VV}} q_{\mathrm{V2}}^2}{\left(\Lambda_1^{\mathrm{VV}}\right)^2} + \frac{\kappa_3^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^2}{\left(\Lambda_Q^{\mathrm{VV}}\right)^2} \right] m_{\mathrm{V1}}^2 \epsilon_{\mathrm{V1}}^* \epsilon_{\mathrm{V2}}^* \\ &\quad + \frac{1}{v} a_2^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \,, \end{split}$$

 f_{a3} parameter extracted from the fit (ratio of cross sections)

$$f_{a3}^{\rm ggH} = \frac{|a_3^{\rm gg}|^2}{|a_2^{\rm gg}|^2 + |a_3^{\rm gg}|^2} \operatorname{sign}\left(\frac{a_3^{\rm gg}}{a_2^{\rm gg}}\right) \,.$$

Alessia Murrone slides SM@LHC 2021

arXiv:2104.12152

Table 2: The numbers of events expected in the SM for different H signal (sig) and background (bkg) contributions and the observed number of events in each category defined in Scheme 1 targeting Hff and Hgg anomalous couplings. The ttH signal expectation is quoted for the SM and anomalous coupling ($\kappa_t = 0$, $\kappa_t = 1.6$) scenario, both generated with the same cross section.

	Untagged	VBF- 1jet	VBF- 2jet	VH- leptonic	VH- hadronic	tīH- leptonic	tīH- hadronic
ggH sig	182.98	15.50	6.70	0.35	4.68	0.02	0.18
VBF sig	7.23	3.28	7.23	0.05	0.28	0.01	0.05
WH sig	2.68	0.22	0.22	1.07	1.17	0.03	0.03
ZH sig	2.20	0.14	0.15	0.26	0.78	0.02	0.05
bbH sig	1.90	0.13	0.08	0.03	0.07	0.00	0.01
ttH sig	0.43	0.00	0.08	0.14	0.15	0.68	0.86
$(\tilde{\kappa}_{t}=1.6)$	(0.45)	(0.00)	(0.12)	(0.15)	(0.15)	(0.87)	(1.18)
tH sig	0.14	0.01	0.10	0.04	0.03	0.04	0.03
Signal	197.89	19.31	14.57	2.00	7.40	0.80	1.23
$q\overline{q} \to 4\ell \text{bkg}$	210.50	6.93	1.92	2.23	1.87	0.08	0.04
$gg ightarrow 4\ell$ bkg	19.79	1.53	0.56	0.38	0.24	0.01	0.01
EW bkg	3.43	0.18	1.37	0.26	0.57	0.24	1.07
Z + X b k g	77.94	2.46	4.88	1.20	3.29	0.21	1.07
Total	509.55	30.41	23.30	6.05	13.38	1.33	3.41
Observed	539	27	20	10	12	0	2

07/06/21

Table 3: The numbers of events expected in the SM for different H signal (sig) and background (bkg) contributions and the observed number of events in each category defined in Scheme 2 targeting HVV anomalous couplings. The EW (VBF, WH, and ZH) signal expectation is quoted for the SM and four anomalous coupling $(a_3/a_2/\kappa_1/\kappa_2^{Z\gamma})$ scenarios $f_{ai} = 1$, all generated with the same total EW production cross section.

	Untagged	Boosted	VBF- 1jet	VBF- 2jet	VH- leptonic	VH- hadronic
ggH sig	171.46	6.48	15.15	10.44	0.35	5.99
VBF sig	5.06	1.18	2.64	8.60	0.06	0.54
(a_3/a_2)	(0.29/0.29/	(0.69/0.54/	(0.12/0.09/	(6.10/4.95/	(0.03/0.02/	(0.28/0.21/
$\kappa_1/\kappa_2^{Z\gamma}$)	0.05/0.09)	0.52/0.48)	0.03/0.05)	1.91/1.83)	0.01/0.01)	0.07/0.07)
WH sig	2.18	0.43	0.29	0.22	1.11	1.20
$(a_3/a_2/$	(1.93/3.15/	(3.81/3.20/	(0.83/0.92/	(1.20/1.05/	(2.75/2.86/	(3.43/3.33/
$\kappa_1/\kappa_2^{Z\gamma}$)	0.72/0.00)	6.28/0.00)	0.22/0.00)	2.04/0.00)	3.47/0.00)	2.93/0.00)
ZH sig	1.87	0.34	0.16	0.16	0.26	0.79
$(a_3/a_2/$	(0.99/1.89/	(1.87/1.66/	(0.30/0.35/	(0.56/0.51/	(0.42/0.48/	(1.42/1.53/
$\kappa_1/\kappa_2^{Z\gamma}$)	0.68/1.17)	4.14/12.34)	0.12/0.27)	1.30/3.88)	0.65/1.82)	1.84/4.69)
bbH sig	1.84	0.04	0.13	0.09	0.03	0.09
t t H sig	1.65	0.04	0.00	0.32	0.13	0.19
tH sig	0.13	0.02	0.01	0.12	0.04	0.05
Signal	184.1	8.5	18.4	19.8	1.9	8.8
$(a_3/a_2/$	(178.2/180.3/	(12.9/12.0/	(16.5/16.7/	(18.7/17.4/	(3.7/3.9/	(11.4/11.4/
$\kappa_1/\kappa_2^{Z\gamma}$)	176.4/176.2)	17.5/19.4)	15.7/15.6)	16.1/16.6)	4.6/2.3)	11.1/11.0)
$q\overline{q} \rightarrow 4\ell bkg$	206.05	1.89	6.78	2.78	2.21	2.30
$gg ightarrow 4\ellbkg$	19.05	0.38	1.52	0.76	0.37	0.31
EW bkg	3.50	0.66	0.20	1.98	0.23	0.85
Z + X bkg	69.87	3.73	2.46	9.70	1.20	4.10
Total	481.3	15.1	29.3	34.9	5.9	16.24
$(a_3/a_2/$	(475.4/477.5/	(19.5/18.6/	(27.4/27.6/	(33.8/32.4/	(7.7/7.9/	(18.83/18.78/
$\kappa_1/\kappa_2^{Z\gamma}$)	473.6/473.4)	24.1/26.0)	26.6/26.5)	31.1/31.6)	8.6/6.3)	18.54/18.47)
Observed	512	18	27	30	10	13

arXiv:2104.12152

07/06/21

arXiv:2104.12152

Table 4: The list of kinematic observables used for category selection and fitting in categorization Schemes 1 and 2. Only the main features involving the kinematic discriminants in the category selection are listed, while complete details are given in Section $\underline{\beta}$. The Untagged category includes the events not selected in the other categories.

Category	Selection	Observables \vec{x} for fitting
Scheme 1		
VBF-1jet	$\mathcal{D}_{1 \mathrm{jet}}^{\mathrm{VBF}} > 0.7$	$\mathcal{D}_{\mathrm{bkg}}$
VBF-2jet		$\mathcal{D}_{ m bkg}, \mathcal{D}_{ m 2jet}^{ m VBF}, \mathcal{D}_{ m 0-}^{ m ggH}, \mathcal{D}_{ m CP}^{ m ggH}$
VH-hadronic	$\mathcal{D}_{2 m jet}^{ m VBF} > 0.5$ $\mathcal{D}_{2 m jet}^{ m VH} > 0.5$	$\mathcal{D}_{ m bkg}$
VH-leptonic	see Section 3	$\mathcal{D}_{ m bkg}$
t T H-hadronic	see Section 3	$\mathcal{D}_{ m bkg'}\mathcal{D}_{ m 0-}^{ m t\overline{t}H}$
t T H-leptonic	see Section 3	$\mathcal{D}_{ m bkg'}\mathcal{D}_{ m 0-}^{ m t\bar{t}H}$
Untagged	none of the above	$\mathcal{D}_{\mathrm{bkg}}$
Scheme 2		
Boosted	$p_{\mathrm{T}}^{4\ell} > 120\mathrm{GeV}$	$\mathcal{D}_{ m bkg\prime} p_{ m T}^{4\ell}$
VBF-1jet	$\mathcal{D}_{1 \mathrm{jet}}^{\mathrm{VBF}} > 0.7$	$\mathcal{D}_{ m bkg'} p_{ m T}^{4\ell}$
VBF-2jet	$\mathcal{D}_{2 \mathrm{jet}}^{\mathrm{VBF}} > 0.5$	$\mathcal{D}_{\mathrm{bkg}}^{\mathrm{EW}}, \mathcal{D}_{\mathrm{0h+}}^{\mathrm{VBF+dec}}, \mathcal{D}_{\mathrm{0-}}^{\mathrm{VBF+dec}}, \mathcal{D}_{\mathrm{\Lambda1}}^{\mathrm{VBF+dec}}, \mathcal{D}_{\mathrm{\Lambda1}}^{\mathrm{Z}\gamma,\mathrm{VBF+dec}}, \mathcal{D}_{\mathrm{int}}^{\mathrm{VBF}}, \mathcal{D}_{\mathrm{CP}}^{\mathrm{VBF}}$
VH-hadronic	$egin{aligned} \mathcal{D}^{\mathrm{VBF}}_{\mathrm{2jet}} &> 0.5 \ \mathcal{D}^{\mathrm{VH}}_{\mathrm{2jet}} &> 0.5 \end{aligned}$	$\mathcal{D}_{bkg}^{EW}, \mathcal{D}_{0h+}^{VH+dec}, \mathcal{D}_{0-}^{VH+dec}, \mathcal{D}_{\Lambda 1}^{VH+dec}, \mathcal{D}_{\Lambda 1}^{Z\gamma, VH+dec}, \mathcal{D}_{int}^{VH}, \mathcal{D}_{CP}^{VH}$
VH-leptonic	see Section 3	$\mathcal{D}_{ m bkg'} p_{ m T}^{4\ell}$
Untagged	none of the above	$\mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{\mathrm{0h+}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{0-}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{\Lambda1}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{\Lambda1}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{int}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{CP}}^{\mathrm{dec}}$

General Lorentz invariant form of HVV scattering amplitude :

$$\begin{split} A(\text{HVV}) &= \frac{1}{v} \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} + \frac{\kappa_3^{\text{VV}} (q_{\text{V1}} + q_{\text{V2}})^2}{\left(\Lambda_Q^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* \\ &+ \frac{1}{v} a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \,, \end{split}$$

SU(2)xU(1) enforces relations between ZZ,WW, $\gamma\gamma$ and Z γ couplings :

$$\begin{array}{rcl} a_{1}^{\mathrm{WW}} &=& a_{1}^{\mathrm{ZZ}}, \\ a_{2}^{\mathrm{WW}} &=& c_{w}^{2} a_{2}^{\mathrm{ZZ}} + s_{w}^{2} a_{2}^{\gamma_{2}} + 2 s_{w} c_{w} a_{2}^{\mathrm{ZY}}, \\ a_{3}^{\mathrm{WW}} &=& c_{w}^{2} a_{3}^{\mathrm{ZZ}} + s_{w}^{2} a_{2}^{\gamma_{2}} + 2 s_{w} c_{w} a_{3}^{\mathrm{ZY}}, \\ \hline \frac{\kappa_{1}^{\mathrm{WW}}}{(\Lambda_{1}^{\mathrm{WW}})^{2}} (c_{w}^{2} - s_{w}^{2}) &=& \left(\frac{\kappa_{1}^{\mathrm{ZZ}}}{(\Lambda_{1}^{\mathrm{ZZ}})^{2}} + 2 s_{w}^{2} \frac{a_{2}^{2\gamma} - a_{2}^{\mathrm{ZZ}}}{m_{Z}^{2}} + 2 \frac{s_{w}}{c_{w}} (c_{w}^{2} - s_{w}^{2}) \frac{a_{2}^{\mathrm{ZY}}}{m_{Z}^{2}}, \\ \hline \frac{\kappa_{2}^{\mathrm{ZY}}}{(\Lambda_{1}^{\mathrm{ZY}})^{2}} (c_{w}^{2} - s_{w}^{2}) &=& 2 s_{w} c_{w} \left(\frac{\kappa_{1}^{\mathrm{ZZ}}}{(\Lambda_{1}^{\mathrm{ZZ}})^{2}} + \frac{a_{2}^{\gamma} - a_{2}^{\mathrm{ZZ}}}{m_{Z}^{2}} \right) + 2 (c_{w}^{2} - s_{w}^{2}) \frac{a_{2}^{\mathrm{ZY}}}{m_{Z}^{2}}. \end{array}$$

Assume $a^{\gamma\gamma}$ and $a^{Z\gamma}$ constrained by $H \rightarrow \gamma\gamma$ and $H \rightarrow Z\gamma$ measurements 4 independent couplings : a_1 (SM), a_2 , a_3 (CP-Odd), k_1

arXiv:2104.12152

Summary of anomalous Htt, Hgg and HVV couplings:

Parameter	Scenario	Observed	Expected	Parameter	Scenario		Observed	Expected
$ f_{a3}^{ggH} \\ f_{CP}^{Htt} \begin{cases} \\ \\ \\ $	$\begin{array}{l} ggH \left(H \rightarrow 4\ell \right) \\ tH \& t\bar{t}H \left(H \rightarrow 4\ell \right) \\ tH \& t\bar{t}H \left(H \rightarrow \gamma\gamma \right) \fbox{26} \\ tH \& t\bar{t}H \left(H \rightarrow 4\ell \& \gamma\gamma \right) \\ ggH \left(H \rightarrow 4\ell \right) \\ ggH \& tH \& t\bar{t}H \left(H \rightarrow 4\ell \right) \\ ggH \& tH \& t\bar{t}H \left(H \rightarrow 4\ell \right) \\ ggH \& tH \& t\bar{t}H \left(H \rightarrow 4\ell \& \gamma\gamma \right) \end{array}$	$\begin{array}{c} 0.00\pm 0.33 \left[-0.67, 0.67\right] \\ -0.01 \substack{+1.01 \\ -0.99} \left[-1,1\right] \\ -0.56 \substack{+1.56 \\ -0.44} \left[-1,1\right] \end{array}$	$\begin{array}{c} 0 \pm 1 \ [-1,1] \\ 0 \pm 1 \ [-1,1] \\ 0.00 \pm 0.49 \ [-0.82,0.82] \\ 0.00 \pm 0.48 \ [-0.81,0.81] \\ 0 \pm 1 \ [-1,1] \\ 0.00 \pm 0.47 \ [-1,1] \\ 0.00 \pm 0.30 \ [-0.70,0.70] \end{array}$	f _{a3}	Approach 1 $f_{a2} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a2}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	0.00004 [-0.0007, 0.00044] [-0.00055, 0.00168] -0.00805 [-0.02656, 0.00034] [-0.07191, 0.00990] 0.00005 [-0.00010, 0.00061] [-0.00072, 0.00218]	0.00000 [-0.00081, 0.00081] [-0.00412, 0.00412] 0.00000 [-0.00086, 0.00086] [-0.00423, 0.00422] 0.0000 [-0.0012, 0.0012] [-0.0057, 0.0057]

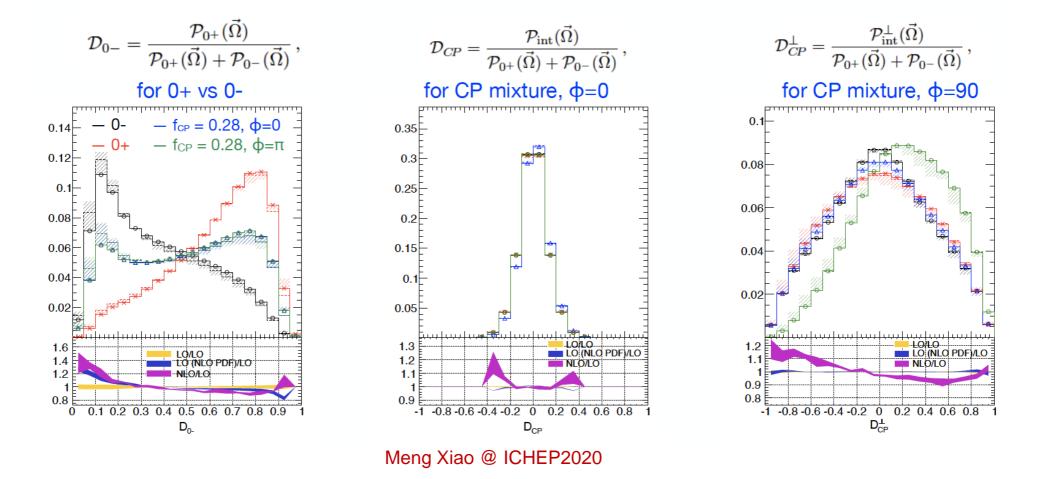
Summary of constraints on the Htt, Hgg and HVV couplings in the Higgs basis of SMEFT:

Channels	Coupling	Observed	Expected	Observed correlation			
				c _{gg}	<i>c</i> _{gg}	$\kappa_{\rm t}$	$ ilde{\kappa}_{ ext{t}}$
tH &ttH &ggH	c_{gg}	$-0.0012\substack{+0.0022\\-0.0174}$	$0.0000\substack{+0.0019\\-0.0196}$	1	-0.050	-0.941	+0.029
	\tilde{c}_{gg}	$-0.0017\substack{+0.0160\\-0.0130}$	$0.0000^{+0.0138}_{-0.0138}$		1	+0.046	-0.568
	$\kappa_{\rm t}$	$1.05\substack{+0.25\\-0.20}$	$1.00^{+0.34}_{-0.26}$			1	+0.168
	$\tilde{\kappa}_{t}$	$-0.01\substack{+0.69\\-0.67}$	$0.00_{-0.71}^{+0.71}$				1
$ttH(\gamma\gamma + 4I)$				$\delta c_{\rm z}$	C_{zz}	$C_{z\square}$	\tilde{c}_{zz}
VBF & VH & $H \rightarrow 4\ell$	δc_{z}	$-0.03^{+0.06}_{-0.25}$	$0.00\substack{+0.07\\-0.27}$	1	+0.241	-0.060	-0.009
	C_{zz}	$0.01^{+0.11}_{-0.10}$	$0.00^{+0.22}_{-0.16}$		1	-0.884	+0.058
	$C_{z\Box}$	$-0.02^{+0.04}_{-0.04}$	$0.00^{+0.06}_{-0.09}$			1	+0.020
	\tilde{c}_{zz}	$-0.11\substack{+0.30\\-0.31}$	$0.00^{+0.63}_{-0.63}$				1

María Moreno Llácer - Higgs CP studies at ATLAS+CMS

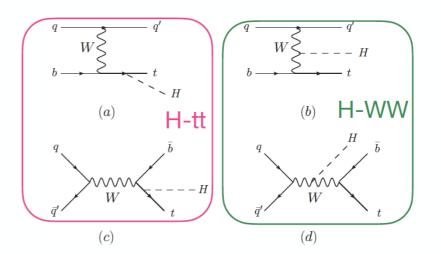
07/06/21

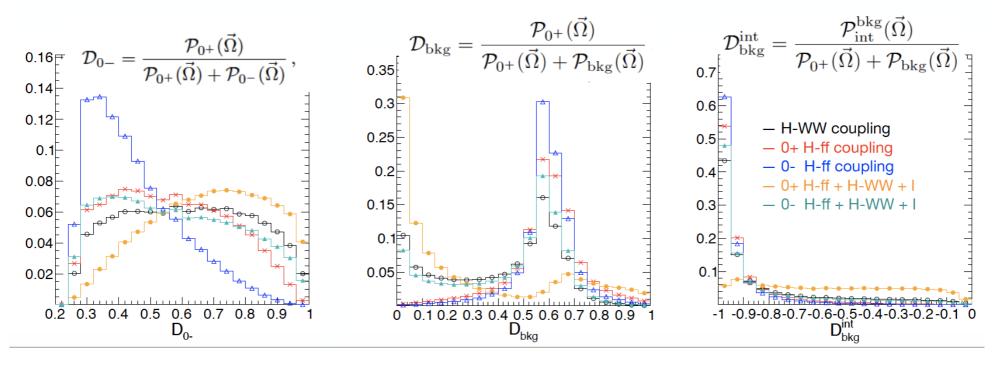
$H \rightarrow 4I$ to probe HVV, Hgg and Htt couplings


arXiv:2104.12152

Category	Selection	Observables \vec{x} for fitting
Scheme 1		
VBF-1jet	${\cal D}_{1 m jet}^{ m VBF} > 0.7$	$\mathcal{D}_{ m bkg}$
VBF-2jet	$\mathcal{D}_{2 \mathrm{jet}}^{\mathrm{VBF}} > 0.5$	$\mathcal{D}_{ m bkg}$, $\mathcal{D}_{ m 2jet}^{ m VBF}$, $\mathcal{D}_{ m 0-}^{ m ggH}$, $\mathcal{D}_{ m CP}^{ m ggH}$
VH-hadronic	$egin{split} \mathcal{D}^{ m VBF}_{ m 2jet} > 0.5 \ \mathcal{D}^{ m VH}_{ m 2jet} > 0.5 \end{split}$	$\mathcal{D}_{ m bkg}$
VH-leptonic	see Section 3	$\mathcal{D}_{ m bkg}$
t T H-hadronic	see Section 3	$\mathcal{D}_{\mathrm{bkg'}}\mathcal{D}_{\mathrm{0-}}^{\mathrm{t\bar{t}H}}$
ttH-leptonic	see Section 3	$\mathcal{D}_{\mathrm{bkg'}}\mathcal{D}_{\mathrm{0-}}^{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}}$
Untagged	none of the above	$\mathcal{D}_{ m bkg}$
Scheme 2		
Boosted	$p_{\mathrm{T}}^{4\ell} > 120\mathrm{GeV}$	$\mathcal{D}_{ m bkg}$, $p_{ m T}^{4\ell}$
VBF-1jet	${\cal D}_{1 m jet}^{ m VBF}>0.7$	$egin{aligned} \mathcal{D}_{ ext{bkg'}} p_{ ext{T}}^{4\ell} \ \mathcal{D}_{ ext{bkg'}} p_{ ext{T}}^{4\ell} \end{aligned}$
VBF-2jet	$\mathcal{D}_{2 \mathrm{jet}}^{\mathrm{VBF}} > 0.5$	$\mathcal{D}_{\mathrm{bkg'}}^{\mathrm{EW}} \mathcal{D}_{\mathrm{0h+}}^{\mathrm{VBF+dec}}, \mathcal{D}_{\mathrm{0-}}^{\mathrm{VBF+dec}}, \mathcal{D}_{\mathrm{\Lambda1}}^{\mathrm{VBF+dec}}, \mathcal{D}_{\mathrm{\Lambda1}}^{\mathrm{Z}\gamma,\mathrm{VBF+dec}}, \mathcal{D}_{\mathrm{int}}^{\mathrm{VBF}}, \mathcal{D}_{\mathrm{CP}}^{\mathrm{VBF}}$
VH-hadronic	$egin{split} \mathcal{D}^{ m VBF}_{ m 2jet} > 0.5 \ \mathcal{D}^{ m VH}_{ m 2jet} > 0.5 \ _ \end{split}$	$\mathcal{D}_{\mathrm{bkg}'}^{\mathrm{EW}} \mathcal{D}_{\mathrm{0h+}}^{\mathrm{VH+dec}}, \mathcal{D}_{\mathrm{0-}}^{\mathrm{VH+dec}}, \mathcal{D}_{\mathrm{A1}}^{\mathrm{VH+dec}}, \mathcal{D}_{\mathrm{A1}}^{\mathrm{Z}\gamma,\mathrm{VH+dec}}, \mathcal{D}_{\mathrm{int}}^{\mathrm{VH}}, \mathcal{D}_{\mathrm{CP}}^{\mathrm{VH}}$
VH-leptonic	see Section 3	$\mathcal{D}_{ m bkg'} p_{ m T}^{4\ell}$
Untagged	none of the above	$\mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{\mathrm{0h+}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{0-}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{\Lambda1}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{\Lambda1}}^{\mathrm{Z}\gamma,\mathrm{dec}}, \mathcal{D}_{\mathrm{int}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{CP}}^{\mathrm{dec}}$

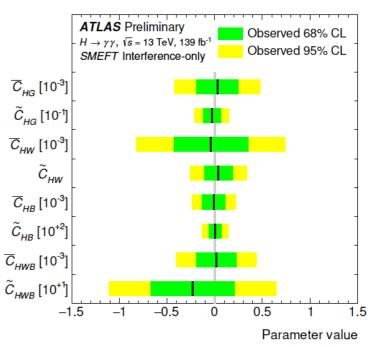
07/06/21 María Moreno Llácer - Higgs CP studies at ATLAS+CMS


ttH: ME based discriminants from MELA


- JHUGen generated LO and NLO events
- The MEs use the 4-momentum of tt->(ff'b,ff'b) and H
- small impact from LO/NLO and PDF scale variation

tqH process

- t-channel + s-channel
- Strong Hff and HVV interference
- Sensitive to the size, sign and CP of the Hff coupling



Meng Xiao @ ICHEP2020

Reinterpretations cross-sections measurements in $H \rightarrow \gamma \gamma$

ATLAS-CONF-2019-029

- No deviation from SM observed
- Not taking event rate into account reduces sensitivity to CP-odd Wilson coefficients
- But makes test of CP violation less model-dependent
- Better constraints when including quadratic terms

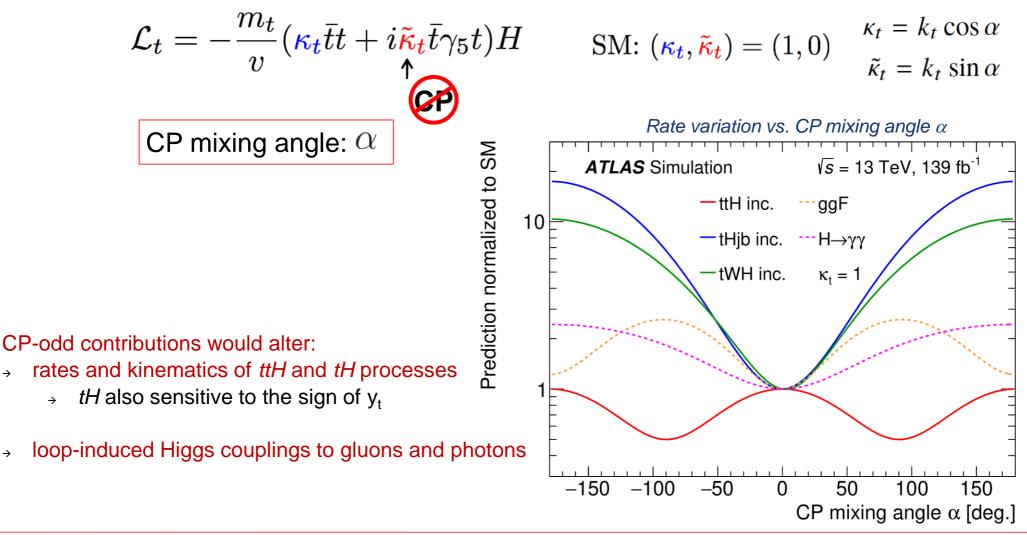
95% CL, interference-only terms	95% CL, interference and quadratic terms
	$[-6.1, 4.7] \times 10^{-4}$
	$[-1.5, 1.4] imes 10^{-3}$
$[-8, 2, 7.4] \times 10^{-4}$	$[-8.3, 8.3] imes 10^{-4}$
[-0.26, 0.33]	$[-3.7, 3.7] imes 10^{-3}$
$[-2.4, 2.3] imes 10^{-4}$	$[-2.4, 2.4] imes 10^{-4}$
[-13.0, 14.0]	$[-1.2, 1.1] imes 10^{-3}$
$[-4.0, 4.4] imes 10^{-4}$	$[-4.2, 4.2] imes 10^{-4}$
[-11.1, 6.5]	$[-2.0, 2.0] imes 10^{-3}$
	$[-4.2, 4.8] \times 10^{-4}$ $[-2.1, 1.6] \times 10^{-2}$ $[-8, 2, 7.4] \times 10^{-4}$ $[-0.26, 0.33]$ $[-2.4, 2.3] \times 10^{-4}$ $[-13.0, 14.0]$ $[-4.0, 4.4] \times 10^{-4}$

07/06/21 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

[•] Limits on single c_i assuming $c_{i\neq i} = 0$

Is the top-Higgs coupling a pure scalar interaction ?

$J^{CP} = 0^{++}$?


→

→

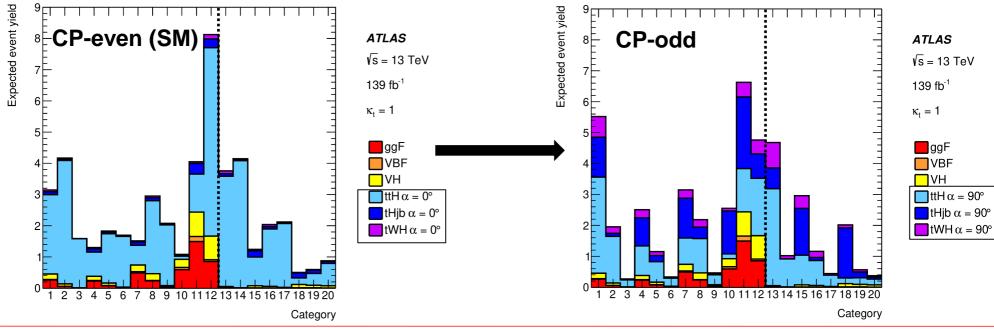
Phys.Rev.Lett.125(2020)061802

No deviations found in CP properties of the Higgs couplings to gauge bosons Caveat: in those, CP-odd contributions enter only via higher-order operators

NEW: pseudoscalar admixture directly tested in top-Higgs interaction using ttH/tH events with H $\rightarrow \gamma\gamma$

07/06/21 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

Is the top-Higgs coupling a pure scalar interaction ?


J^{CP} **= 0**⁺⁺ ?

Phys.Rev.Lett.125(2020)061802

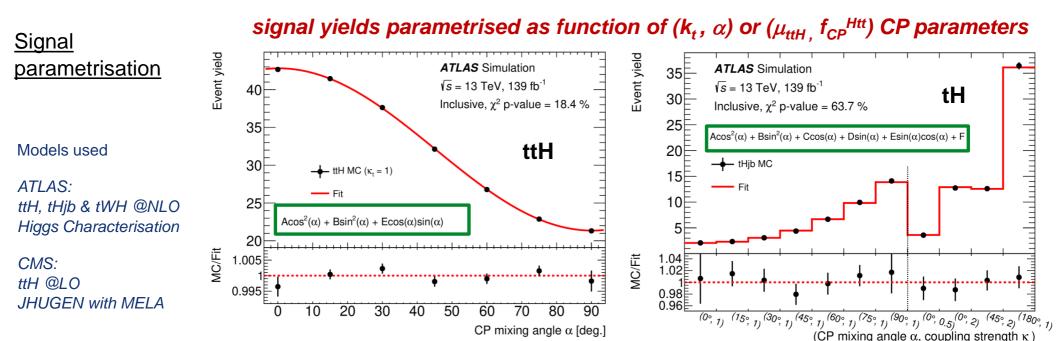
No deviations found in CP properties of the Higgs couplings to gauge bosons Caveat: in those, CP-odd contributions enter only via higher-order operators

NEW: pseudoscalar admixture directly tested in top-Higgs interaction using ttH/tH events with H $\rightarrow \gamma\gamma$

Expected event yields in each analysis region

María Moreno Llácer - Higgs CP studies at ATLAS+CMS

Is the top-Higgs coupling a pure scalar interaction ?

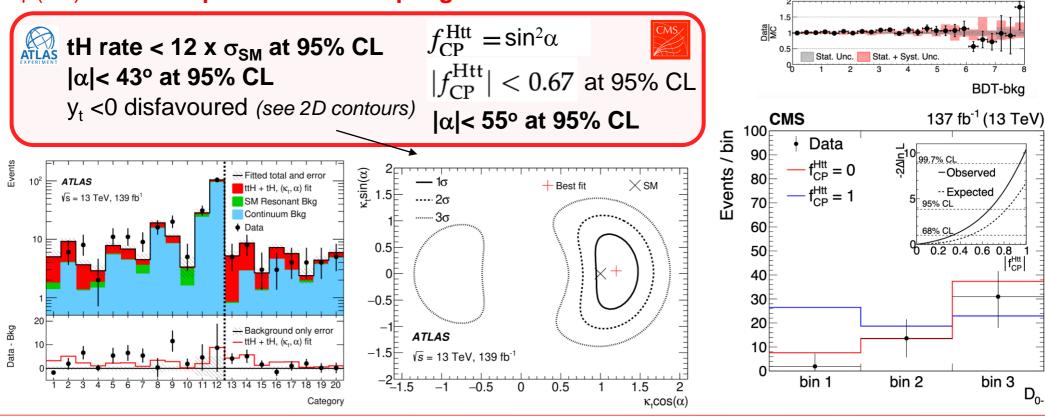

J^{CP} = 0⁺⁺ ?

07/06/21

No deviations found in CP properties of the Higgs couplings to gauge bosons

Caveat: in those, CP-odd contributions enter only via higher-order operators

NEW: pseudoscalar admixture directly tested in top-Higgs interaction using ttH/tH events with H $\rightarrow \gamma\gamma$



María Moreno Llácer - Higgs CP studies at ATLAS+CMS

Analysis strategy Preselection: Hadronic/Leptonic *tt* decays Several MVAs for object reconstruction (also top quark) Two event-level MVAs used \rightarrow define several analysis categories

- 1: ttH vs. continuum bkg.
- 2: ttH(/tH) CP-odd vs. CP-even
- Signal extraction: fit $m_{\gamma\gamma}$ in all categories

<u>Results</u>: overall, quite similar; limited by data statistics μ (ttH)~1.4 and a pure CP-odd coupling excluded at 3.9 σ /3.2 σ

07/06/21

María Moreno Llácer - Higgs CP studies at ATLAS+CMS

D

f^{Htt}

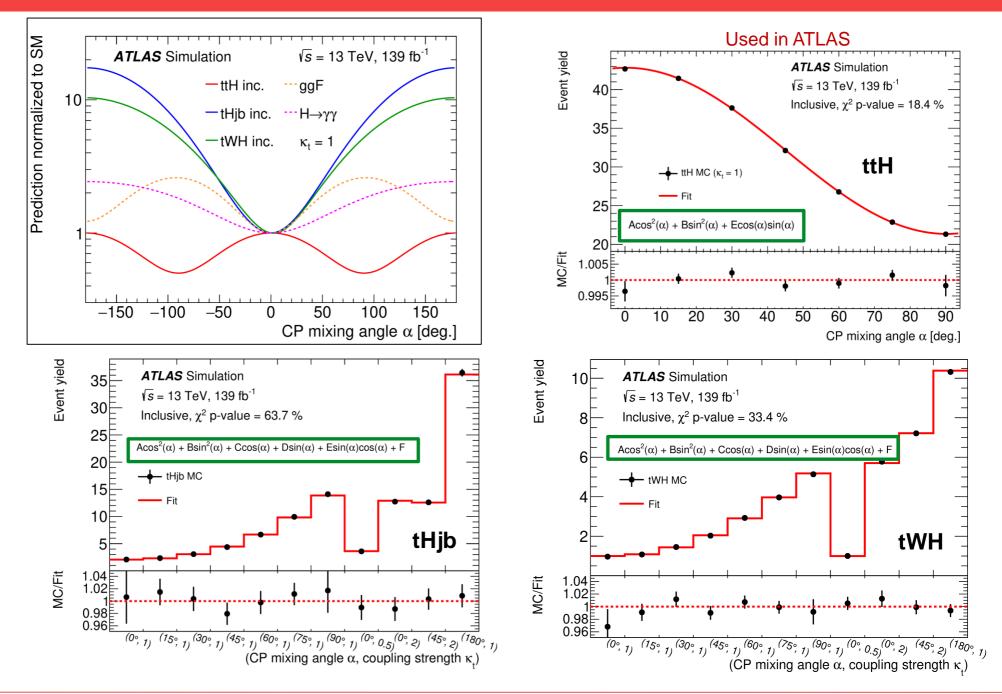
137 fb⁻¹ (13 TeV)

Data

☐ttH(125)

tt + γ

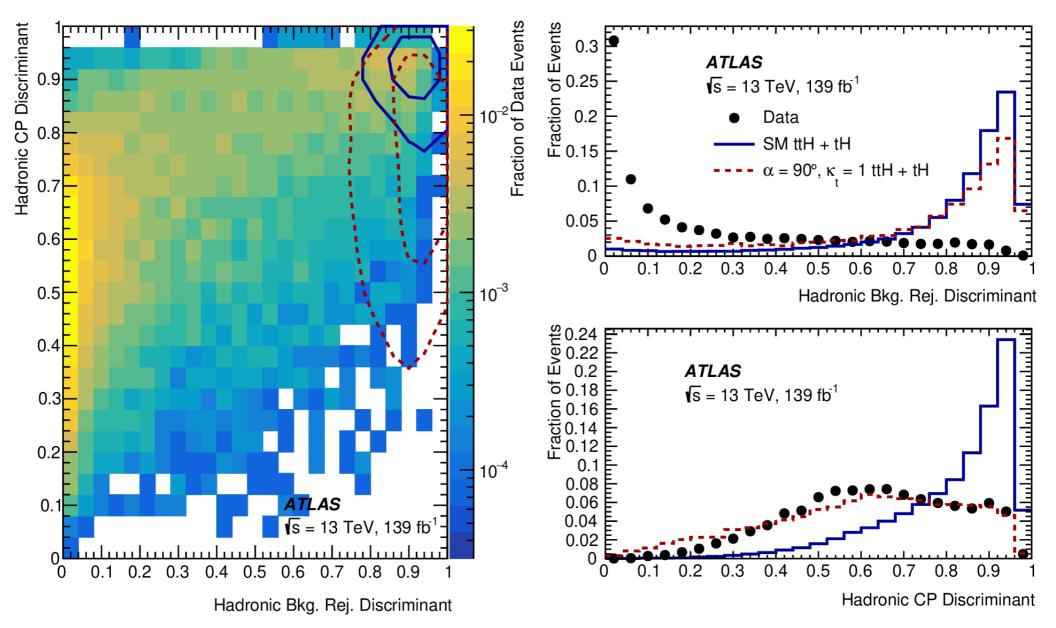
 (γ) + jets

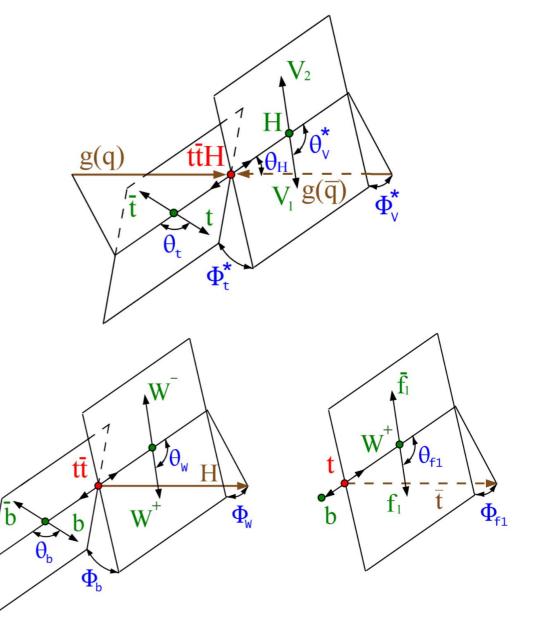

CMS

Events

10⁸

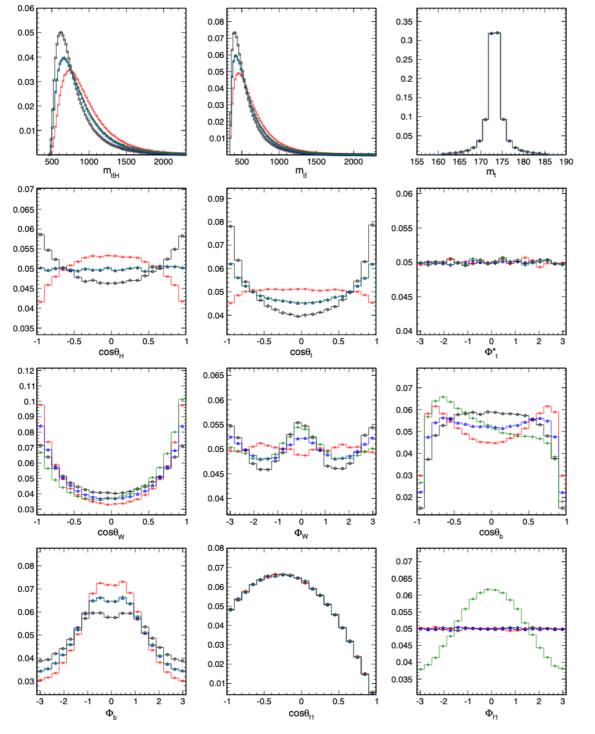
10²


10


07/06/21

María Moreno Llácer - Higgs CP studies at ATLAS+CMS

arXiv: 2004.04545


- (i) $m_{t\bar{t}H}$: invariant mass of the $t\bar{t}H$ system;
- (ii) θ_H : angle between the *H* boson direction and the incoming partons in the $t\bar{t}H$ frame;
- (iii) θ_V^* : angle of the $H \to VV(f\bar{f})$ decay with respect to the opposite $t\bar{t}$ direction in the H frame;
- (iv) Φ_V^* : angle between the production plane, defined by incoming partons and *H*, and $H \to VV(f\bar{f})$ decay plane;
- (v) θ_t : angle between the top-quark direction and the opposite Higgs direction in the $t\bar{t}$ frame;
- (vi) Φ_t^* : angle between the decay planes of the $t\bar{t}$ system and $H \to VV(f\bar{f})$ in the $t\bar{t}H$ frame;
- (vii) m_{tt} : invariant mass of the $t\bar{t}$ system;
- (viii) θ_W : angle between W^+ and opposite of the $b\bar{b}$ system in the W^+W^- frame;
- (ix) Φ_W : angle between the production $(b\bar{b})(W^+W^-)H$ plane and the plane of the W^+W^- system in the $t\bar{t}$ frame;
- (x) θ_b : angle between the *b* quark and opposite of the W^+W^- system in the $b\bar{b}$ frame;
- (xi) Φ_b : angle between the planes of the $b\bar{b}$ and W^+W^- systems in the $t\bar{t}$ frame;
- (xii) m_{Wb1} or m_{Wb2} : invariant mass of the W^+b or $W^-\bar{b}$ system;
- (xiii) θ_{f1} or θ_{f2} : angles between fermion direction and opposite of the *b* or \overline{b} quark in the W^+ or W^- frame;
- (xiv) Φ_{f1} or Φ_{f2} : angle between the W^+ or W^- decay plane and the $\bar{t}W^+b$ or $tW^-\bar{b}$ plane in the t or \bar{t} -quark frame;
- (xv) $m_{f1\bar{f}1}$ or $m_{f2\bar{f}2}$: invariant mass of the $f_1\bar{f}_1$ or $f_2\bar{f}_2$ system.

07/06/21

María Moreno Llácer - Higgs CP studies at ATLAS+CMS

Pheno paper PRD94,055023 (2016)

Pheno paper PRD94,055023 (2016)

CP-even CP-odd Mixture with $\phi_{CP}=0^{\circ}$ Mixture with $\phi_{CP}=90^{\circ}$

107/06/2 FIG. 5. The normalized angular and mass distributions in the process $pp \rightarrow t\bar{t}H$ corresponding to four scenarios of anomalous $t\bar{t}H$ couplings: $f_{CP} = 0$ (SM 0⁺, red crosses), $f_{CP} = 1$ (pseudoscalar 0⁻, black circles), $f_{CP} = 0.28$ with $\phi_{CP} = 0$ (blue triangles), and $\phi_{CP} = \pi/2$ (green diamonds). The LHC pp energy of 13 TeV and H boson mass of 125 GeV are used in simulation. See the text for the definition of all observables.

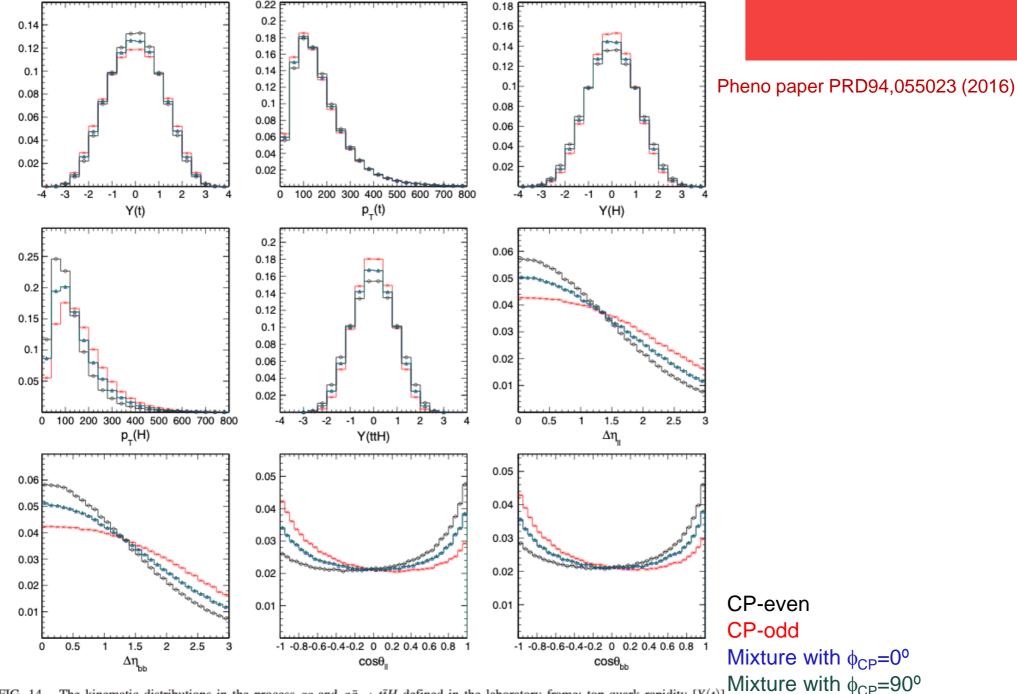
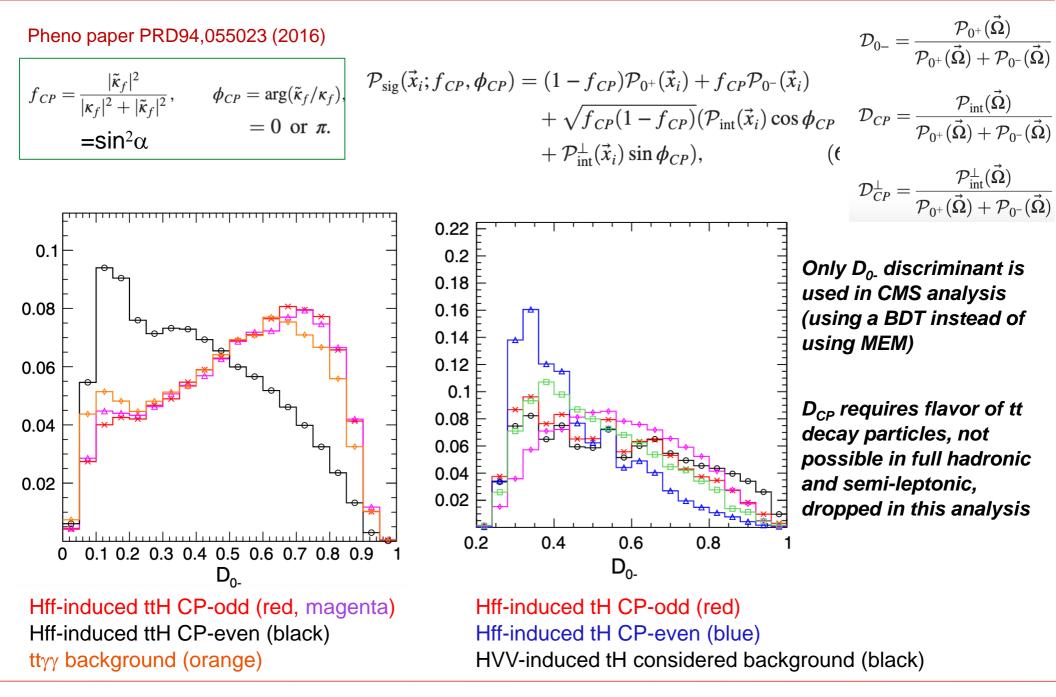



FIG. 14. The kinematic distributions in the process gg and $q\bar{q} \rightarrow t\bar{t}H$ defined in the laboratory frame: top-quark rapidity [Y(t)], transverse momentum of the top quark $[p_T(t)]$, H boson rapidity [Y(t)], transverse momentum of the H boson $[p_H(t)]$, $t\bar{t}H$ system rapidity $[Y(t\bar{t}H)]$, pseudorapidity difference between the two down-type fermions decayed from top and antitop $(\Delta \eta_{ll})$ and between two bottom quarks $(\Delta \eta_{bb})$, $\cos \theta_{ll}$ between the two down-type fermions, and $\cos \theta_{bb}$ between the two bottom quarks. Four scenarios of anomalous $t\bar{t}H$ couplings are shown: $f_{CP} = 0$ (SM 0⁺, black circles), $f_{CP} = 1$ (pseudoscalar 0⁻, red crosses), $f_{CP} = 0.28$ with $\phi_{CP} = 0$ (blue triangles), and $\phi_{CP} = \pi/2$ (green diamonds). The LHC pp energy of 13 TeV and H boson mass of 125 GeV are used in simulation.

07/06/21 María Moreno Llácer - Higgs CP studies at ATLAS+CMS