Reconstruction in ALICE and calibration of TPC space-charge distortions in Run 3

Ernst Hellbär (GSI) for the ALICE collaboration

The Ninth Annual Conference on Large Hadron Collider Physics (LHCP2021)
June 7, 2021
Reconstruction in ALICE and TPC space-charge distortion calibration

Fri plenary talk:
Upgrades for ALICE by C. Lippmann

Insertion of the TPC after the upgrade during LS2
Goals and challenges

Record large Pb-Pb minimum bias sample

Continuous readout at 50 kHz interaction rate in Pb-Pb collisions
 • No triggers or event rejection
 • Processing of time frames (TF, 10 - 20 ms) instead of events
 • Events overlapping in TPC

GPU processing and data compression
 • 50 times more events and data to be processed and stored

TPC calibration and tracking
 • Calibration of space-charge distortions
 • Tracking with continuous readout and space-charge distortions
Data processing in Run 3

First Level Processors (FLPs)
- Calibration, processing and collection of data from detectors

Event Processing Nodes (EPNs)
- **Synchronous processing** during beam and data recording
 - TPC tracking (~99 % of computing time) fully running on GPUs
- **Asynchronous processing** when EPN resources are available, e.g. no beam, pp collisions
 - TPC processing, ITS and TRD tracking on GPUs (~80 % of processing)
 - Goal to perform full barrel tracking on GPUs (~95 % of the total processing) in the future
TPC calibration

Pedestal, Noise, Pulser

Gain and dE/dx

- Pad-wise gain calibration
- p, T, high-voltage dependence
- Track topology
- Track-based residual calibration

Electron drift velocity

Distortions due to space charge and other effects

- Average space-charge distortion correction
- Correction of space-charge distortion fluctuations
- Static distortions and distortions due to charge-up effects
TPC upgrade

Readout chambers based on GEMs replaced MWPCs + gating grid

No dedicated mechanism to prevent ion backflow (IBF)

- Suppression to below 1 % by a combination of four GEMs and optimized high-voltage settings

Continuous readout at 50 kHz Pb-Pb

- Gating grid implied rate limitation to ~3 kHz

Significant amount of space charge piling up inside the drift volume

- Non-uniform space-charge density ρ_{sc}
 - Large space-charge distortions (dr, $dr\phi$, dz) of measured space points
 - Space-charge density and distortion fluctuations
Space-charge density and distortion fluctuations

Dependencies of the space-charge density
- Ion backflow x gain = \(\varepsilon \)
- Number of ion pile-up events within one full ion drift time
- Particle flux (primary, secondary particles) from collisions
- Ionization deposited by single particles

Relative space-charge density fluctuations \(\sigma_{SC}/\mu_{SC} \) of ~2 % at 50 kHz Pb-Pb
- Distortion fluctuations of O(mm - cm) in \(r \) and \(r\phi \)
- Relevant time scales: 5 - 10 ms

\[
\frac{\sigma_{SC}}{\mu_{SC}} = \frac{1}{\sqrt{N_{\text{ion pileup}}}} \left[\frac{\sigma_{N_{\text{mult,prim}}}}{\mu_{N_{\text{mult,prim}}}} + \frac{\sigma_{N_{\text{mult,sec}}}}{\mu_{N_{\text{mult,sec}}}} + \frac{1}{F_{\text{prim}}(r) \cdot \mu_{N_{\text{mult,prim}}} + F_{\text{sec}}(r) \cdot \mu_{N_{\text{mult,sec}}}} \left[1 + \frac{\sigma_{Q_{\text{track,prim}}}(r)}{\mu_{Q_{\text{track,prim}}}(r)} + \frac{\sigma_{Q_{\text{track,sec}}}(r)}{\mu_{Q_{\text{track,sec}}}(r)} \right]^2 \right]
\]

1D fluctuations

3D fluctuations

LHCP2021 07-Jun-2021 Reconstruction in ALICE and TPC space-charge distortion calibration Ernst Hellbär (GSI)
Space-charge distortion calibration

Synchronous reconstruction

Correction of average distortions
- Stored correction maps from previous calibration intervals

1D→3D distortion-fluctuation correction

Precision: O(mm)
- Tracking
- Track matching to external detectors

Asynchronous reconstruction

Correction of average distortions
- Correction map extracted from data itself

Distortion-fluctuation correction
- 1D→3D for pp
- 3D→3D for Pb-Pb

Precision: 200 μm
- Intrinsic track resolution of the TPC
Correction of average space-charge distortions

Distorted TPC track fitted with relaxed tolerances

Matching to ITS and TRD+TOF track segments

Residuals between distorted TPC clusters and ITS-TRD-TOF track refit

- TPC volume divided into small voxels

Statistics / calibration interval length for required precision ($O(50 \, \mu\text{m})$) depending on voxel size

- $O(\text{min})$
- Space-charge distortion fluctuations relevant on much shorter time scales

Calibration of other effects like static E-field distortions, E_xB, electron drift velocity and misalignment included
Correction of space-charge distortion fluctuations

Update interval of 5 - 10 ms for distortion-fluctuation correction

- Insufficient statistics for ITS-TRD-TOF reference method

⇒ Data-driven machine learning (ML) algorithms and convolutional neural networks (CNN)
 - Space-charge density ⇒ 3D fluctuation corrections

 Dependencies of distortion fluctuations

- Space-charge density fluctuations
 ⇒ Integrated digital currents (IDCs)

- Mean space-charge density
 ⇒ Derivative of average corrections w.r.t. IDCs
Integrated digital currents (IDCs)

Estimator for the space-charge density fluctuations $\rho_{SC} - <\rho_{SC}>$

Charge (ADCs) on each pad integrated over ~ 1 ms

- Relation to the space-charge density
 - Local ε
 - Drift-field distortions for ions
 - Ion drift time

3D IDCs (r, φ, t)

- 3-dimensional (r, φ, z) information about space-charge density fluctuations

1D IDCs (t)

- Information about fluctuations in time (z) direction
Estimators of mean space-charge density

Average space-charge corrections

- Contributions affecting the space-charge density
 - Local ϵ variations
 - Ion drift distortions
 - Ion drift velocity
- Additional contributions from other sources
 - Static distortions
 - Charge-up effects

\Rightarrow Non-linear system

Derivative of average corrections w.r.t IDCs

- Single dependence on the change of the space-charge density
- Challenge: extraction for calibration intervals using ITS-TRD-TOF method
 - Fourier transform of 1D IDC fluctuations for time windows \sim ion drift time $O(200 \text{ ms})$
 - Distributions of Fourier coefficients c_k
 - Extraction of average corrections for percentiles P_i defined by c_k intervals
 - Numerical derivative using average corrections from 2 or more percentiles

Simulation Pb-Pb 50 kHz

$I(t) = \langle I(t) \rangle + \Delta I(t)$

$I(t) = \langle I(t) \rangle + \sum_{k=0}^{N} c_k \Phi_k(t)$

$\frac{\partial \Delta_k}{\partial c_k} = \frac{\langle \Delta \rangle_{k,P_{\text{high}}} - \langle \Delta \rangle_{k,P_{\text{low}}}}{\langle c_k \rangle_{P_{\text{high}}} - \langle c_k \rangle_{P_{\text{low}}}}$
Data-driven ML algorithms and CNNs

1D→3D distortion-fluctuation correction

- 1D IDCs (Fourier coefficients) + derivative of avg. corr. → 3D corrections
- Boosted Decision Trees (BDTs) or simple dense networks
- Correction of
 - 1D distortion fluctuations
 - Global properties of distortion fluctuations
- Precision expected to be sufficient for pp collisions

3D→3D distortion-fluctuation correction

- 3D IDCs + derivative of avg. corr. → 3D corrections
- Convolutional neural network: U-Net
- Correction of 3D distortion fluctuations
- Preliminary studies
 - Predictions dominated by global properties instead of local properties of space-charge distortion fluctuations
 ➔ 1D→3D correction as pre-filter
Summary

Continuous readout at 50 kHz of Pb-Pb collisions
- Synchronous and asynchronous processing on the EPN farm
 - Utilization of GPUs for dominant part of the processing

TPC space-charge distortion calibration
- Most challenging calibration task
- Average distortion correction using ITS-TRD-TOF reference track method in time intervals $O(\text{min})$
- Correction of space-charge distortion fluctuations in time intervals $O(5-10 \text{ ms})$
 - IDCs as proxy for space-charge density fluctuations
 - Derivative of average corrections w.r.t. IDCs extracted from data
 - Data-driven ML algorithms and CNNs
 - 1D\rightarrow3D correction using BDTs or simple dense networks
 - 3D\rightarrow3D correction using a CNN
Backup
ALICE detectors in Run 3

Central barrel tracking
- **ITS** (7 layers)
- **TPC** (152 pad rows)
- **TRD** (6 layers)
- **TOF** (1 layer)

Calorimeters
- **EMCal**, **PHOS**, **DCal**

Forward detectors
- **MFT**, **MCH**, **MID**, **ZDC**

Fast Interaction Trigger (FIT)
- **FT0**, **FV0**, **FDD**

Others
- **HMPID**

Detector upgrades
(also see Fri plenary talk by C. Lippmann)
Space-charge density and distortion fluctuations

Dependencies of the space-charge density
- Ion backflow x gain = ϵ
- Number of ion pile-up events within one full ion drift time
- Particle flux (primary, secondary particles) from collisions
- Ionization deposited by single particles

Relative space-charge density fluctuations σ_{SC}/μ_{SC} of ~2 % at 50 kHz Pb-Pb
- Distortion fluctuations of O(mm - cm) in r and $r\phi$
- Relevant time scales: 5 - 10 ms

$$\frac{\sigma_{SC}}{\mu_{SC}} = \sqrt{\frac{1}{N_{\text{ion pileup}}} \left[\frac{\sigma_{N_{\text{mult,prim}}}}{\mu_{N_{\text{mult,prim}}}} \right]^2 + \left(\frac{\sigma_{N_{\text{mult,relsec}}}}{\mu_{N_{\text{mult,relsec}}}} \right)^2 + \frac{1}{F_{\text{prim}}(r) \cdot \mu_{N_{\text{mult,prim}}} + F_{\text{sec}}(r) \cdot \mu_{N_{\text{mult,sec}}}} \left[\frac{\sigma_{Q_{\text{track,prim}}}(r)}{\mu_{Q_{\text{track,prim}}}(r)} \right]^2 + \frac{\sigma_{Q_{\text{track,sec}}}(r)}{\mu_{Q_{\text{track,sec}}}(r)} \right]$$

1D fluctuations
3D fluctuations
Data-driven approach

Fourier transform of 1D IDCs for time windows ~ ion drift time $O(200 \text{ ms})$
- Set of Fourier coefficients c_k for each window
 - Assumption: Gaussian white noise vectors
 - Gaussian distributions with same finite width

Numerical derivative of average corrections w.r.t. IDCs
- Collection of windows with coefficients (e.g. 0th) within defined percentiles
 - Similar space-charge density fluctuations
 - Combined statistics from several windows
- ITS-TRD-TOF method to extract average corrections for given percentiles
- Numerical derivative using two or more average correction maps

Extended fully data-driven approach
- Linear decomposition of corrections
 - Derivatives of corrections for n frequencies
 - n Fourier coefficients
1D→3D distortion-fluctuation correction

Boosted Decision Trees (BDTs) or simple dense networks

- **Feature variables**
 - Position r, ϕ, z
 - n Fourier coefficients of 1D IDC fluctuations
 - Significantly less parameters than independent raw 1D IDC values
 - Importance of frequencies k expected to decrease with $1/k$ as IDC fluctuations are integrated over the drift length
 - Derivative of average corrections

- **Output variables**
 - $dr, dr\phi, dz$

Correction of:

- **1D fluctuations**
- **global properties of fluctuations imposed by boundary conditions**
 - Fixed TPC boundaries
 - Asymmetric profile of space-charge density

Precision expected to be sufficient for pp collisions

- Smaller space-charge distortions or much higher interaction rates (200 kHz to 1 MHz) than in Pb-Pb
3D→3D distortion-fluctuation correction

Convolutional Neural Network: U-Net

- Classification of each pixel
- Propagation of local information and context

Prediction of full fluctuation corrections (dr, d\(r\phi\), dz) using 3D IDC fluctuations and derivative of average corrections as input

Preliminary studies performed using space-charge density fluctuations and average space-charge density from simulation

- Systematic dependence of the mean and RMS of the predictions on the distance to the TPC boundaries
- Predictions of local fluctuations dominated by global properties imposed by boundary conditions
 - Network focused on learning boundary conditions instead of local fluctuations

→ 1D→3D correction required as pre-filter to reduce the magnitude of global effects
Preliminary results

Evaluation

- Mean (μ) and RMSE of the difference between predicted and true distortion fluctuations ($d_{\text{pred}} - d_{\text{true}}$)
- Multi-dimensional analysis in TPC phase space
 - r, φ, z, relative density fluctuations, ...

Variation of

- grid size: 90 x 17 x 17, 180 x 33 x 33
- number of training samples: 5k, 10k, 18k

Different training statistics required for different grid sizes

- Increasing number of training samples from 10k to 18k
 - Indications of overtraining for 90 x 17 x 17
 - Network still undertrained for 180 x 33 x 33

Systematic dependence of the predicted results on the TPC radius

- Effect of space-charge density fluctuations on the distortion fluctuations strongly depends on the distance from the TPC boundaries
Interpretation of the preliminary U-Net performance

Unit test

- Response of the U-Net to a local space-charge density fluctuation
- Narrow line charge fluctuation at fixed r, ϕ

Scale and shape of the prediction dominated by global (long range) dependencies

- Training time spent on learning broken assumptions of the U-Net instead of local effects
 - Asymmetric boundary conditions
 - Continuity along ϕ-direction
 - Broken translational invariance
- Inability to predict local fluctuations at the current stage of the development

![Graph showing the performance of the U-Net](image)
Boundary and charge-up effects

Sources

- Finite granularity of field cage strips
- Dead zones between ROCs and GEM stacks
- Misalignment, e.g. between ROCs and CE
- Local charge-up effects

Consequences

- Sharp gradients of distortions close to the boundaries
 - Smeared out by average distortions and fluctuations
- Kinematic and QA variables affected by residual miscalibration

Calibration

- Analytical model or data driven templates
- Partial rescaling to account for time dependent changes (e.g. IR)
- Model based on local distortions / corrections
 - Commutativity of distortions from different effects only valid locally
Calibration of the ion drift time

Ion drift time a priori unknown

- Function of gas composition, p, T, E
- Microscopic ion movement in a gas substantially different from electrons
 - Velocity and direction after collisions with gas atoms
 - Drifting ion species not well-defined
 - Y. Kalkan et al 2015 JINST 10 P07004
 ➔ Separate calibration required on time scales $O(h)$
- Unavailable from hardware measurements

Possible calibration procedure using space-charge distortion calibration data

- Robust tracking variable after average distortion correction
 - DCA fluctuations as a function of η, ϕ, q/p_T
- Correlation of DCA fluctuations to 0D IDC fluctuations
 - Variation of the 0D IDC integration time
 - Ion drift time $\pm \Delta t$ around the nominal value
 - Biggest correlation and smallest dispersion expected for the correct ion drift time