Recent progress in jet substructure calculations

Daniel Reichelt

June 7, 2021 at The Ninth Annual Conference on Large Hadron Collider Physics

Introduction

"event built from jets" \Rightarrow "jet built from constituents"

"cluster the event into jets" \rightarrow "cluster jet into subjets"

- tagging
- trimming
- soft-drop
 - + recursive
 - + dynamical
 - includes modified mass-drop
- collinear-drop

• . . .

"observables from jets" \rightarrow "observables from constituents"

- jet mass
- angularities
- energy correlation functions
- jet pull
- . . .

* disclaimer: this is a non-exhaustive and biased list of examples

Introduction

"event built from jets" \Rightarrow "jet built from constituents"

"cluster the event into jets" \rightarrow "cluster jet into subjets"

- tagging
- trimming
- soft-drop
 - + recursive
 - + dynamical
 - includes modified mass-drop
- collinear-drop

• . . .

"observables from jets" \rightarrow "observables from constituents"

- jet mass
- angularities
- energy correlation functions
- jet pull
- . . .
- * disclaimer: this is a **non-exhaustive** and **biased** list of examples

Angularities

study family of observables

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in J} \left(\frac{p_{T,i}}{p_{T,J}} \right)^{\kappa} \left(\frac{\Delta R_i}{R} \right)^{\alpha}$$

here: calculations need IRC safety, so $\kappa = 1$

reuse energy-correlations @ NLL [Larkoski, Salam, Thaler '13] [Larkoski, Neill, Thaler '14] [Banfi, Salam, Zanderighi '04]

Interlude: Lund Plane

[Andersson, Gustafson, Lönnblad, Petterson '88] [Dreyer, Salam, Soyez '18] [Lifson, Salam, Soyez '20]

representation of single emission phase space

 $\rightarrow\,$ at LL uniform \Rightarrow predicted deviations

uses:

1. forward: resummed calculations / parton shower building

e.g. [Gustafson '92] [Hamilton, Medves, Salam, Scyboz, Soyez '20]

2. backwards: map cluster steps of final jets to Lund plane \Rightarrow physics insights to build optimal observables

Soft-Drop: Intro

 $n^{(l)}$

Soft-Drop: Application

[CMS '18] [ATLAS '17]

example: jet mass after grooming

procedure:

1. soft-drop groom jet constituents

Soft-Drop: Application

[Caletti, Fedkevych, Marzani, DR, Schumann,

Soyez, Theeuwes '20]

towards automation: CAESAR formalism [Banfi, Salam, Zanderighi '04] established implementation as Sherpa plugin [Gerwick, Höche, Marzani, Schumann '15] general implementation for soft-drop [Baron, DR, Schumann, Theeuwes '20] here: ingredients for angularities (non-global logs/radius R) [Dasgupta, Khelifa-Kerfa, Marzani, Spannowski '12], [Dasgupta, Salam, '01]

June 7, 2021 | D Reichelt (Göttingen University) | LHCP 2021

 λ^1 [Width]

0.05

/HT 1.5

0.7

- jet substructure as a rapidly growing field with close interplay between
 - experiment
 - theory
 - construction of methods
 - Monte Carlo / parton shower development
- examples:
 - jet angularities w/ different parameters as playground
 - \blacktriangleright soft-drop grooming to eliminate UE/NP corrections \rightarrow increase resummation regime
- Outlook:
 - non-perturbative corrections?
 - transition point effects?
 - automation?

Backup