Jet Substructure at CMS

Markus Seidel

June 7, 2021 | LHCP

Measuring jet substructure and correlations in hadronic final states¹

Jet substructure

- Evolution of partonic states to measurable stable particles
- Precise knowledge necessary for:
 - Precision in measurements involving jets (Higgs, top quarks)
 - Flavor tagging, pileup jet ID
- Distinctive features if heavy resonance is contained in a jet
 - Tools for BSM searches with boosted objects

¹overlap removal

Particle flow reconstruction and grooming

CMS Run 2 default

 PF algorithm keeps all tracks, and removes their energy from calorimeter towers

- Charged hadron subtraction (CHS) removes tracks from PU vertices
- Jets clustered with anti- k_t , R = 0.4, 0.8

Optional

- PUPPI algorithm: weigh down neutral clusters not close to PV tracks arXiv:1407.6013
- Iterative soft drop declustering $j_0 \rightarrow j_1 + j_2, j_1 \rightarrow j_0$, stop if $z_g = p_T(j_2) / p_T(j_0) > 0.1$ arXiv:1402.2657

Figure from A. Larkoski (LPC 2014)

Quark and gluon jet substructure in dijet and Z+jet events

- Measure generalized angularities $\lambda_{\beta}^{\kappa} = \sum_{i} z_{i}^{\kappa} \left(\frac{\Delta R(i,\hat{n}_{r})}{R}\right)^{\beta}, z_{i} = p_{T}^{i} / \sum_{i} p_{T}^{i}$ arXiv:1408.3122
- Dimensions: jet p_T, R=0.4↔0.8, charged+neutral↔charged-only, groomed↔ungroomed, dijet events: gluon-enriched ↔ Z+jet events: quark-enriched

Largest uncertainties: statistics in Z+jets, shower & hadronization

PAS SMP-20-010

Quark and gluon jet substructure in dijet and Z+jet events

PAS SMP-20-010

Unfolded data to the particle level and compared to MC

- Left: LHA distribution for $120 < p_T < 150$ GeV, for Z+jet and dijet
- **Right**: $\langle LHA \rangle$ vs. jet p_T , for Z+jet and dijet
- Jets in Z+jet (quark-enriched) narrower than in dijet events (gluon-enriched)
- MG+Pythia8 and Herwig++ bracket the data

Quark and gluon jet substructure in dijet and Z+jet events

• Mean values and ratios in different p_{T} regions, jet radius, jet constituents, grooming

- Newer MC tunes: improved gluons but quark data described less well
- Little impact in ratios from jet radius, jet constituents, grooming \rightarrow insensitive to soft radiation, computable with better precision
- All MC tunes/generators overestimate quark/gluon separation

Markus Seidel (Maryland)

Measurement of jet substructure in $t\bar{t}$ lepton+jets

- $t\bar{t}$ as standard candle: provides bottom, light-enriched and gluon-enriched jet samples
 - Bottom: b-tagged (ghost tagging at particle level)
 - Light-enriched: non b-tagged jets with $|m_{jj} m_W| < 15$ GeV
 - Gluon-enriched: non b-tagged jets with $|m_{jj} m_W| > 15$ GeV

• Observables: angularities, soft drop, N-subjettiness, energy correlations (33 in total)

 \blacksquare Many observables correlated \rightarrow find set of 4 low-correlation observables

Markus Seidel (Maryland)

Jet Substructure at CMS

TOP-17-013

- Groomed momentum fraction z_g
 - \blacksquare Related to QCD splitting function, independent of $\alpha_{\mathcal{S}},$ best described by Herwig
- Angle between groomed subjets ΔR_g
 - \blacksquare Clearly disfavors high α_{S} in Pythia 8 FSR up variation
 - Very narrow b jets in early version of Dire nLL shower
 - \rightarrow inclusion of missing $b \rightarrow bg$ splitting functions gives good agreement
- \blacksquare LHA: Gluon-enriched jets > bottom jets > light-quark jets

Measurement of jet substructure in $t\bar{t}$ lepton+jets

TOP-17-013

RIVET

XCone jet mass distribution in boosted top events

- \blacksquare Select boosted $t\bar{t}$ \rightarrow lepton+jets events, reconstruct with XCone algorithm
- Finds exactly 2 large jets and 2-3 subjets, matching event signature

- XCone mass resolution far superior wrt CA jets (8 TeV publication)
- Reconstructed mass stable vs. pileup

TOP-19-005

RIVET

XCone jet mass distribution in boosted top events

- \blacksquare Mass peak widened by unmerged $t\bar{t},$ good agreement with data
- Unfolded to the particle level to be compared to future SCET calculations in boosted regime with m_t in well-defined mass scheme 1708.02586 arXiv:1803.02321 2012.12304
- With Pythia prediction: $m_t = 172.6 \pm 1.6 \;({
 m exp}) \pm 1.6 \;({
 m model}) \pm 1.0 \;({
 m theory})$ GeV

TOP-19-005

Substructure as a tool: pileup jet ID

- At high luminosity: growing number of PU jets from overlapping low- p_T PU interactions
- **BDT** with 15 input variables: substructure-based and track/vertex-based (LV fraction β)

- \blacksquare 2017: pixel detector upgrade extends tracking coverage from $|\eta|<$ 2.5 to $|\eta|<$ 2.7
- Improved stability of jet multiplicity vs. pileup

DP-20-020

JME-18-001

Boosted W & top tagging using N-subjettiness ratio

• τ_{NM} distinguishes jets with $N \leftrightarrow M$ subjets: τ_{21} for W tagging, τ_{32} for top tagging

Determined data/MC scale factors via tag & probe

Markus Seidel (Maryland)

DP-20-025

Boosted object tagging using ML algorithms

- Improve boosted resonance tagging by feeding jet constituents into neural networks
- DeepAK8 (Convolutional NN) JME-18-002 ParticleNet (Graph NN) arXiv:1902.08570

 \blacksquare NNs shape background mass distribution \rightarrow employ different decorrelation methods

- DeepAK8-DDT: transform NN output to get flat background efficiency arXiv:1603.00027
- DeepAK8-MD: training jets reweighted to be flat in p_T and m_{SD} + use adversarial network
- ParticleNet-MD: train on $X \rightarrow jj$ sample with flat m_X + jets reweighted to be flat in p_T, m_{SD}

DP-20-00

Summary

Jet substructure measurements

- Several measurements of jet substructure in dijet, Z+jet, $t\bar{t}$
- Sensitive to parton shower models, strong coupling, and top mass
- RIVET implementations available or in progress

Jet substructure as a tool

- Jet substructure used for PU jet ID and identifying heavy resonances
- Improved performance by machine learning
- For applications, please see BSM sessions :-)

More precision QCD by CMS

- today, 17:18: "Nucleon Structure and Soft QCD from CMS" by Rajat Gupta
- Thursday, 14:33: "Precision QCD Measurements from CMS" by Salim Cerci