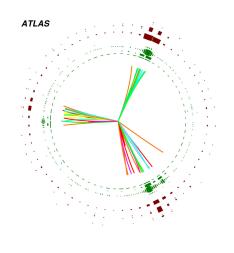
9th Edition of the Large Hadron Collider Physics Conference 7th–12th June 2021

Jet Substructure + Correlations in Hadronic Final States from ATLAS

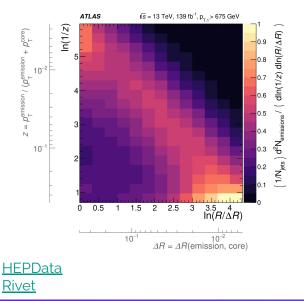
Robin Newhouse University of British Columbia On behalf of the ATLAS Collaboration



THE UNIVERSITY OF BRITISH COLUMBIA

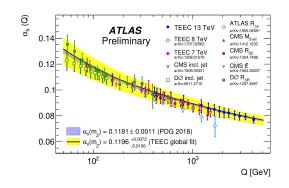
2007.12600

Hadronic event shapes


Six event-shape variables are studied in multijet events . Multi-differential distributions are compared to MC simulation. Generators using ME beyond LO generators do well for high-p_T multijet events.

2004.03540

Lund jet plane


A double-differential cross-section measurement of the LJP is used to compare showering and hadronization algorithms. Physical effects can be factorized.

ATLAS-CONF-2020-025

α measurement using (A)TEEC

Transverse energy-energy correlations and their azimuthal asymmetries are studied in multi-jet events. QCD calculations are fitted to the distributions and the strong coupling constant is extracted for values up to 4 TeV.

Coming soon

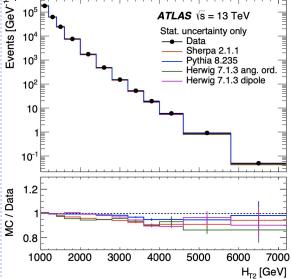
HEPData

Rivet

UBC

Slide 2

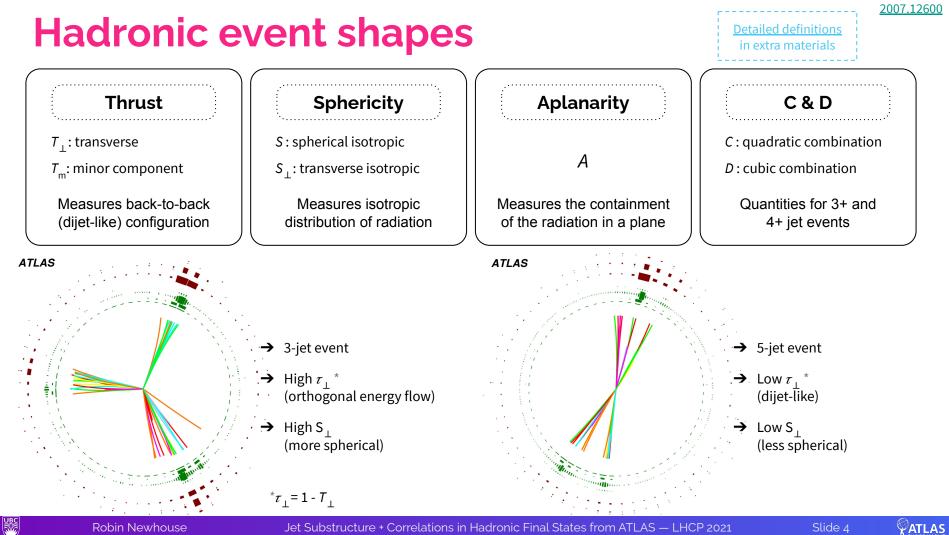
Event Shapes


- Class of observables describing energy flow in multijet events
- A good probe for strong-interaction processes
- Great testing ground for multijet simulation
- This measurement improves upon ATLAS Run-1 analysis (arXiv:1206.2135)
 - 139 fb⁻¹ of 13 TeV Run 2 data (>4000 x more!)
 - High-p_T particle-flow jets
 - Improved generators (<u>ATL-PHYS-PUB-2019-017</u>)

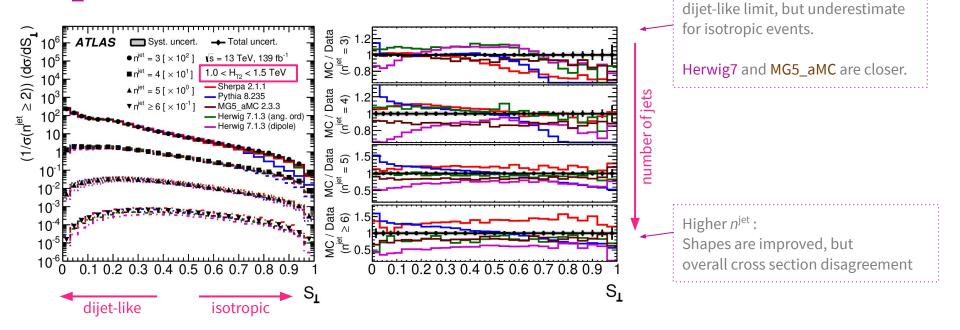
Analysis

- Particle-flow, anti- k_t jets, R = 0.4 • $p_T > 100 \text{ GeV}$ • $|\eta| < 2.4$
- Events $\circ \ge 2$ jets with H₁₂ > 1 TeV
 - $H_{T2} = p_{T1} + p_{T2}$
- Unfolding:

 Unfolded to particle-level using iterative Bayesian unfolding



Scalar sum of transverse momenta of the two leading jets + MC predictions



Robin Newhouse

Jet Substructure + Correlations in Hadronic Final States from <u>ATLAS — LHCP 2021</u>

Slide 4

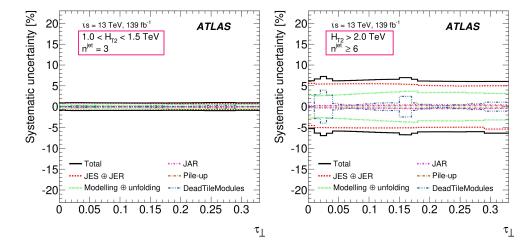
S_{\perp} : Transverse sphericity

Low n^{jet} :

Pythia and Sherpa agree in the

Uncertainties

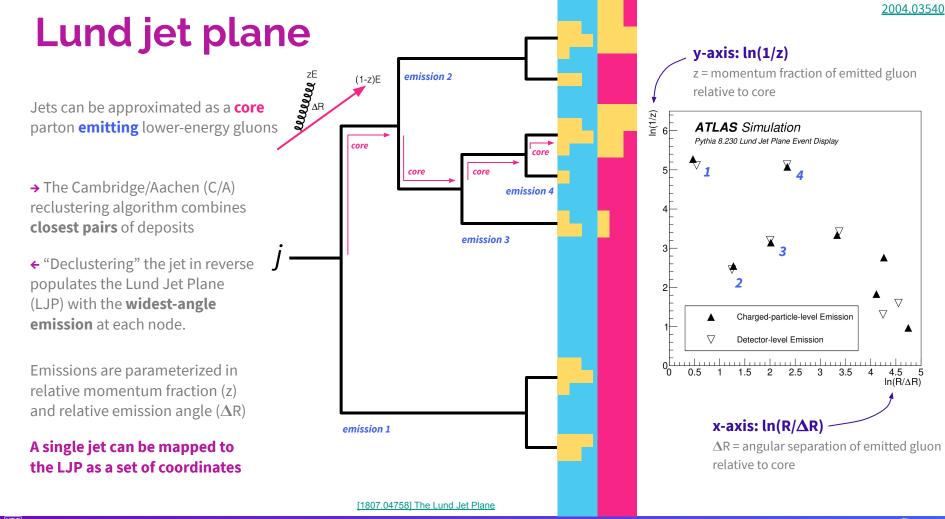
- Modelling and Jet Energy Scale and Jet Energy Resolution are dominant uncertainties
- JES/JER becomes more prominent for higher *n*^{jet} bins
 - Dominant JES/JER uncertainty is MC mis-modelling (2007.02645)
- Total syst. uncertainty from ~1% to ~6% depending on *n*^{jet}


Observations

No MC predictions studied provide a good description in all regions of phase space

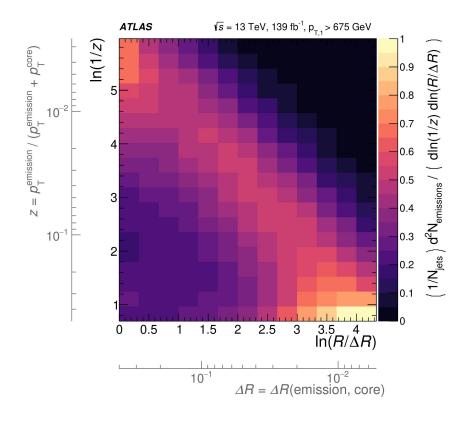
At low n^{jet}, Pythia and Sherpa

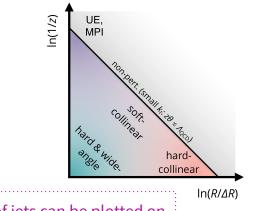
underestimate measurements at high values of event-shape distributions.


- i.e. events in data appear to be more isotropic than predicted by simulation
- Parton shower models have trouble simulating hard and wide-angle radiation

Based on Herwig7 simulation, angle-ordered parton showers perform better than dipole-based parton showers MG5_aMC gives best overall shape agreement

- Includes up to 4 final-state partons
- Highlights importance of ME terms beyond LO for high-p_τ multijet dynamics

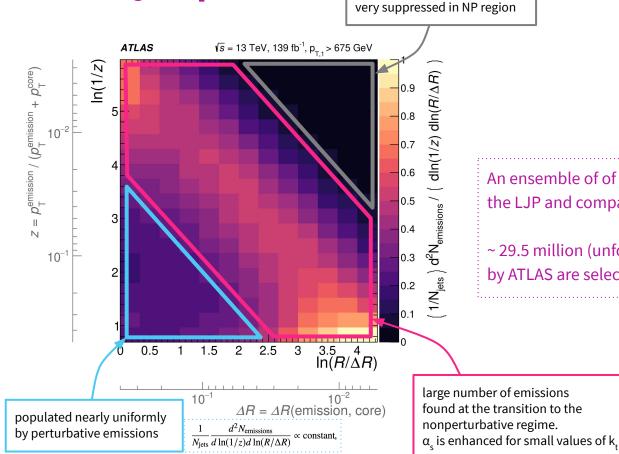


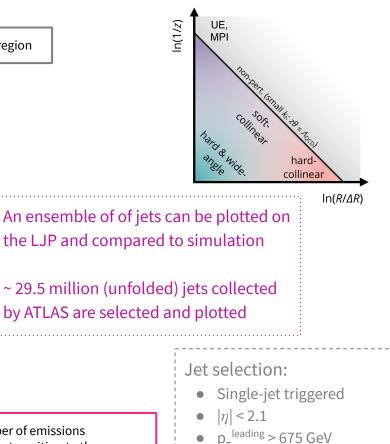


Jet Substructure + Correlations in Hadronic Final States from ATLAS — LHCP 2021

Slide 7

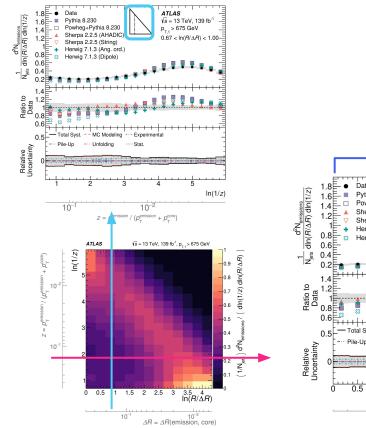
An ensemble of of jets can be plotted on the LJP and compared to simulation

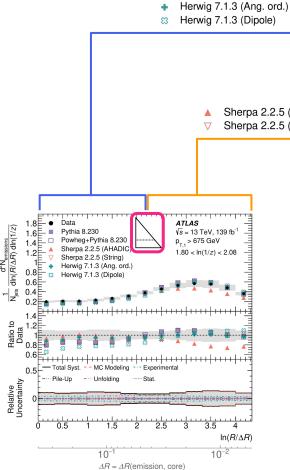

~ 29.5 million (unfolded) jets collected by ATLAS are selected and plotted


Jet selection:

- Single-jet triggered
- |η|<2.1
- $p_{T}^{\text{leading}} > 675 \text{ GeV}$
- $p_T^{\text{leading}} / p_T^{\text{subleading}} < 1.5$

To simplify $2 \rightarrow 2$ interpretation of final state





• $p_{T}^{\text{leading}} / p_{T}^{\text{subleading}} < 1.5$

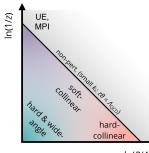
To simplify 2→2 interpretation of final state

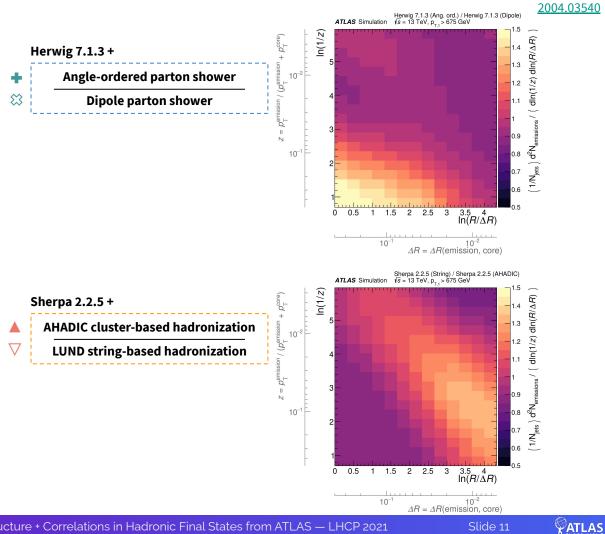
Different **parton shower models** differ most significantly for **hard emissions** at **wide angles** (large values of k_t)

Sherpa 2.2.5 (AHADIC) Sherpa 2.2.5 (String) Different **hadronization models** differ most significantly for **soft collinear splittings**, at **transition to NP region** (small values of k_t)

> **Slices of the LJP** are plotted and compared to MC generators with different **parton shower** and **hadronization** models.

No single model is found to be in agreement with the measured data across the entire plane


Can be useful for tuning NP models and for constraining the parameters of advanced parton shower programs


Ratios of the LJP using different hadronization or showering algorithms can factorize physical effects

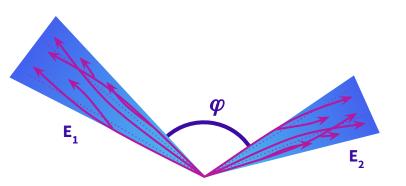
Parton shower ratio shows difference in harder wider-angle emissions

Hadronization ratio shows where hadronization effects are isolated

 $\ln(R/\Delta R)$

Jet Substructure + Correlations in Hadronic Final States from ATLAS — LHCP 2021

Slide 11


α_s measurement using (A)TEEC

Measurement of strong coupling

Uses full Run-2 dataset to measure α_s via evolution of TEEC/ATEEC with varying hard scale

Both observables are sensitive to QCD radiation and present a clear dependence with the strong coupling

Tests asymptotic freedom beyond TeV scale at NLO accuracy

Analysis

Jets:

Particle-flow, anti- k_t , R = 0.4 p_T > 60 GeV, $|\eta| < 2.4$

Unfolding:

Unfolded to particle-level using iterative Bayesian unfolding

101

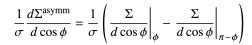
Calculation of α_s :

(A)TEEC distributions measured inclusively and in bins of H_{T2} $\alpha_s(m_z)$ determined by fitting theor. predictions to distributions

TEEC — Transverse energy-energy correlation **ATEEC** — Its associated azimuthal angular asymmetry

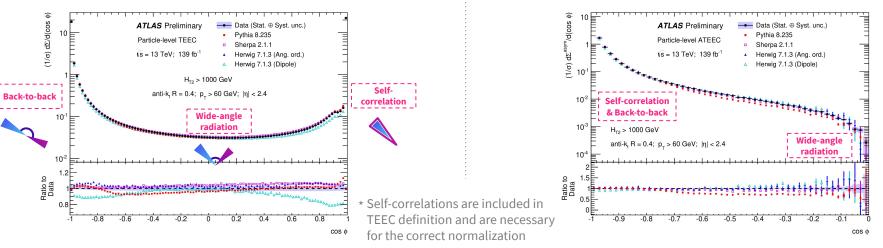
Azimuthal distance between , any two jets

$$\frac{1}{\sigma}\frac{d\Sigma}{d\cos\phi} = \frac{1}{\sigma}\sum_{i,j}\int d\sigma \frac{E_{\mathrm{T},i}E_{\mathrm{T},j}}{(E_{\mathrm{T},i}+E_{\mathrm{T},j})^2}\delta(\cos\Delta\varphi_{ij}-\cos\phi)$$


TEEC

TEEC function in multi-jet events defined as the transverse energy-weighted azimuthal angular distribution of jet pairs in the final state

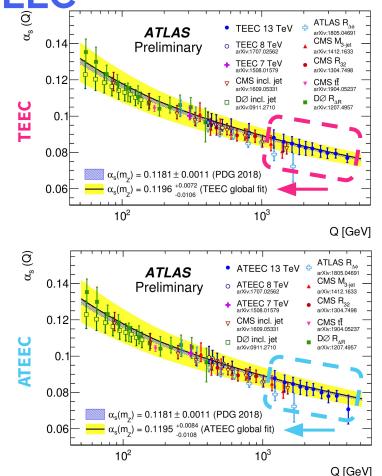
- Peaks at cos(φ) ≃ -1 : back to back two-jet events and cos(φ) ≃ +1 : self correlation*
- **Central plateau** : dominated by wide-angle radiation
- MC generators match data depending on $\cos(\phi)$ region



ATLAS-CONF-2020-025

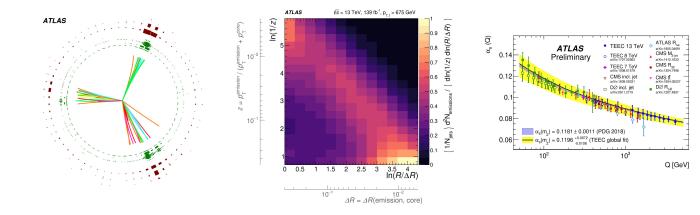
Measures the **difference between the forward** (cos $\phi > 0$) and the backward (cos $\phi < 0$) TEEC

- Eliminates uncertainties symmetric in $\cos(\phi)$
- Peaks at cos(φ) ≃ -1 and drops off several orders of magnitude


α_s measurement using (A)TEEC

A(TEEC) binned in H_{T2} and $\alpha_s(m_Z)$ is determined by fitting theoretical predictions to the observed data Fit is done per-bin and globally

For each bin, $\alpha_s(m_z)$ is evolved to $\alpha_s(Q)$ using NLO solutions to the renormalization group equation


Extends α_s(Q) measurement to Q > 1 TeV Tests RGE predictions at the highest energy scales ever! Agrees well with PDG world average

Comparison to previous analysis (8 TeV) Uncertainties: Stat. $1.5\% \rightarrow 0.5\%$ — Syst. $5\% \rightarrow 2\%$ Increase Q reach from .8 TeV \rightarrow 4 TeV

Conclusions

- Jet substructure and correlation measurements are used to understand and improve the performance of simulation, and to probe QCD
- Modelling uncertainties are dominant in many regions and no one generator performs well in all phase spaces
- The large quantity of events in the Run 2 dataset allows for multi-differential measurements, and precisions measurements of physical parameters

More jets & QCDin ATLAS at LHCP 2021

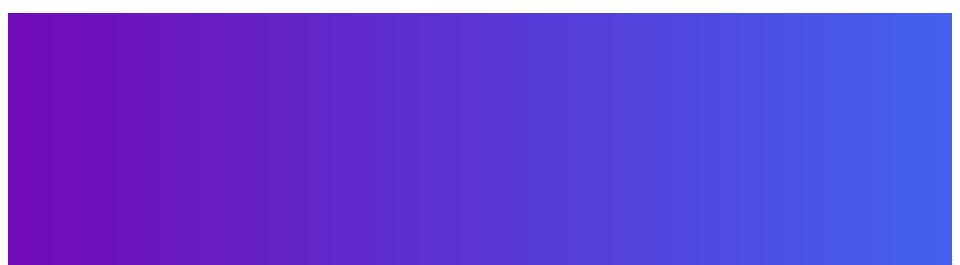
<u>Nucleon Structure and Soft QCD from ATLAS</u> Andre Sopczak (Monday - *Nucleon Structure and Soft QCD*)

Flavour-tagging / Jet / Met performance in ATLAS and CMS Jonathan Bossio (Thursday - Detector performance)


Precision QCD Measurements from ATLAS

Tibor Zenis (Thursday - QCD: Precision Measurements)

Results on soft QCD at LHC and Tevatron


Leszek Adamczyk (Friday - Plenary VII: QCD Physics)



Thank you for your attention!

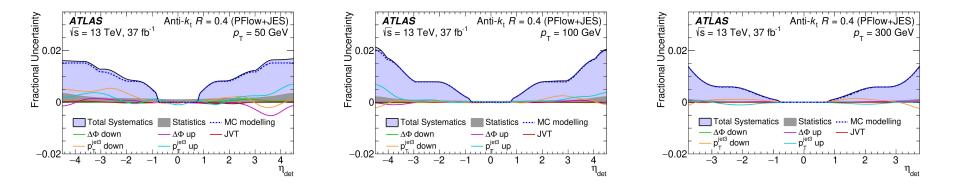
Additional material

Event shape definitions:

S₁: Alice Collaboration, **Transverse sphericity of primary charged particles**, <u>arXiv:1205.3963</u>

A, C and D: CMS Collaboration, Study of the UE in top quark pair production, arXiv:1807.02810

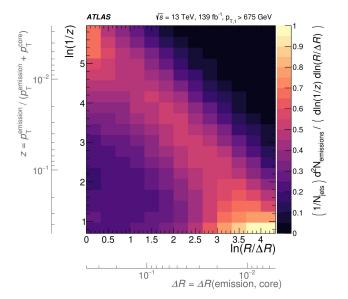
r, Tm: CMS Collaboration, First measurement of hadronic event shapes, <u>arXiv:1102.0068</u>


r₁: CMS Collaboration, Event shapes and azimuthal correlations in Z + jets events, <u>arXiv:1301.1646</u>

r₁: CMS Collaboration, Event shapes variables measured using multijet final states, <u>arXiv:1811.00588</u>

A, T_m, S_{a.8}: C. Chen, New approach to identifying boosted hadronically decaying particles using jet substructure, <u>arXiv:1112.2567</u>

The dominant uncertainty is in MC mis-modelling and is taken to be the difference between the smoothed calibration curves derived from the Powheg+Pythia8 and Sherpa dijet samples. <u>https://arxiv.org/abs/2007.02645</u> (Sec. 5.2.1)


Why this choice of axes?

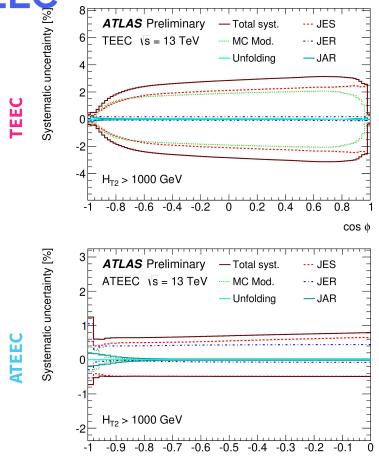
The LJP is sometimes depicted with the y-axis representing $ln(k_t)$.

The choice of using z instead of k_t is to decouple the angular (x-axis) and momentum (y-axis) measurements as the resolution of each can differ substantially.

Historically, both choices of axes have been used.

 $k_{\perp} \sim z^* \Delta R$

Discussion of variables: arXiv:1807.04758 Sec. 2.1



α measurement using (A)TEEC Dominant systematics

TEEC systematic uncertainties are dominated by Jet Energy Scale (< 2%) and **modelling** of the strong interaction (< 2%)

ATEEC systematic uncertainties are dominated by Jet Energy Scale (< 1%) and **Jet Energy Resolution** (< 1%)

Other sources of systematic uncertainty include: Jet Angular Resolution (<0.5%) and Unfolding uncertainty (negligible)

ATLAS-CONF-2020-025

α_s measurement using (A)TEEC

The values of $\alpha_s(m_z)$ determined from fits to the (A)TEEC functions, in inclusive and exclusive H_{T2} bins, and global fit.

TEEC

$\langle Q \rangle$ [GeV]	$\alpha_s(m_Z)$ value (MMHT 2014)	$\chi^2/N_{ m dof}$
Global	$0.1196 \pm 0.0001 \text{ (stat.)} \pm 0.0004 \text{ (syst.)} {}^{+0.0071}_{-0.0104} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	235.8 / 347
Inclusive	$0.1208 \pm 0.0002 \text{ (stat.)} \pm 0.0006 \text{ (syst.)} {}^{+0.0081}_{-0.0101} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	42.7 / 91
1219	$0.1206 \pm 0.0002 \text{ (stat.)} \pm 0.0006 \text{ (syst.)} ^{+0.0083}_{-0.0105} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$	18.6/51
1434	$0.1191 \pm 0.0003 \text{ (stat.)} \pm 0.0007 \text{ (syst.)} ^{+0.0080}_{-0.0101} \text{ (scale)} \pm 0.0010 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	18.0/51
1647	$0.1195 \pm 0.0002 \text{ (stat.)} \pm 0.0007 \text{ (syst.)} ^{+0.0077}_{-0.0094} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	38.2 / 51
1856	$0.1186 \pm 0.0003 \text{ (stat.)} \pm 0.0008 \text{ (syst.)} ^{+0.0076}_{-0.0094} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0004 \text{ (NP)}$	25.9/51
2064	$0.1183 \pm 0.0004 \text{ (stat.)} \pm 0.0010 \text{ (syst.)} ^{+0.0071}_{-0.0084} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0005 \text{ (NP)}$	22.4 / 27
2300	$0.1192 \pm 0.0004 \text{ (stat.)} \pm 0.0011 \text{ (syst.)} ^{+0.0066}_{-0.0075} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0004 \text{ (NP)}$	21.3 / 27
2636	$0.1185 \pm 0.0004 \text{ (stat.)} \pm 0.0012 \text{ (syst.)} ^{+0.0064}_{-0.0072} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$	22.0 / 27
2952	$0.1179 \pm 0.0005 \text{ (stat.)} \pm 0.0014 \text{ (syst.)} \stackrel{+0.0059}{_{-0.0064}} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$	25.0/27
3383	0.1194 ± 0.0007 (stat.) ± 0.0014 (syst.) $^{+0.0052}_{-0.0052}$ (scale) ± 0.0013 (PDF) ± 0.0002 (NP)	15.3 / 13
4095	$0.1167 \pm 0.0010 \text{ (stat.)} \pm 0.0014 \text{ (syst.)} {}^{+0.0050}_{-0.0053} \text{ (scale)} \pm 0.0015 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$	13.5 / 13

Table 2: Values of the strong coupling constant at the Z boson mass scale, $\alpha_s(m_Z)$, obtained from fits to the TEEC function using MMHT 2014 parton distribution functions. The values of the average interaction scale $\langle Q \rangle$ are shown in the first column, while the values of the χ^2 function at the minimum are shown in the third column. The uncertainty referred to as NP is the one related to the non-pQCD corrections.

Scale:

The renormalisation scale is set for each event to the scalar sum of the transverse momenta of all final-state partons, $\mu_R = \hat{H}_T$, while the factorisation scale is set to half this scale, $\mu_F = \hat{H}_T/2$. [arXiv:1807.03692, arXiv:2007.02645]

ATEEC

$\langle Q \rangle$ [GeV]	$\alpha_{\rm s}(m_Z)$ value (MMHT 2014)	$\chi^2/N_{ m dof}$
Global	$0.1195 \pm 0.0002 \text{ (stat.)} \pm 0.0006 \text{ (syst.)} ^{+0.0084}_{-0.0106} \text{ (scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$	254.1 / 173
Inclusive	$0.1198 \pm 0.0002 \text{ (stat.)} \pm 0.0006 \text{ (syst.)} ^{+0.0078}_{-0.0095} \text{ (scale)} \pm 0.0010 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	46.3 / 45
1219	$0.1202 \pm 0.0003 \text{ (stat.)} \pm 0.0006 \text{ (syst.)} ^{+0.0079}_{-0.0098} \text{ (scale)} \pm 0.0010 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	25.7 / 25
1434	$0.1184 \pm 0.0003 \text{ (stat.)} \pm 0.0007 \text{ (syst.)} ^{+0.0078}_{-0.0098} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	35.6/25
1647	$0.1188 \pm 0.0004 \text{ (stat.)} \pm 0.0007 \text{ (syst.)} ^{+0.0073}_{-0.0087} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$	41.9 / 25
1856	$0.1177 \pm 0.0006 \text{ (stat.)} \pm 0.0008 \text{ (syst.)} ^{+0.0072}_{-0.0083} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0006 \text{ (NP)}$	24.6 / 25
2064	$0.1174 \pm 0.0008 \text{ (stat.)} \pm 0.0009 \text{ (syst.)} ^{+0.0069}_{-0.0078} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0007 \text{ (NP)}$	18.7 / 13
2300	$0.1185 \pm 0.0009 \text{ (stat.)} \pm 0.0010 \text{ (syst.)} ^{+0.0063}_{-0.0067} \text{ (scale)} \pm 0.0014 \text{ (PDF)} \pm 0.0005 \text{ (NP)}$	22.5 / 13
2636	$0.1166 \pm 0.0016 \text{ (stat.)} \pm 0.0012 \text{ (syst.)} ^{+0.0062}_{-0.0066} \text{ (scale)} \pm 0.0015 \text{ (PDF)} \pm 0.0000 \text{ (NP)}$	21.7 / 13
2952	0.1141 \pm 0.0029 (stat.) \pm 0.0013 (syst.) $^{+0.0062}_{-0.0069}$ (scale) \pm 0.0018 (PDF) \pm 0.0003 (NP)	15.2/13
3383	0.1164 \pm 0.0043 (stat.) \pm 0.0015 (syst.) $^{+0.0050}_{-0.0044}$ (scale) \pm 0.0017 (PDF) \pm 0.0001 (NP)	6.3/6
4095	$0.1029 \pm 0.0163 \text{ (stat.)} \pm 0.0014 \text{ (syst.)} ^{+0.0066}_{-0.0012} \text{ (scale)} \pm 0.0010 \text{ (PDF)} \pm 0.0003 \text{ (NP)}$	5.9/6

Table 3: Values of the strong coupling constant at the Z boson mass scale, $\alpha_s(m_Z)$, obtained from fits to the ATEEC function using MMHT 2014 parton distribution functions. The values of the average interaction scale $\langle Q \rangle$ are shown in the first column, while the values of the χ^2 function at the minimum are shown in the third column. The uncertainty referred to as NP is the one related to the non-pQCD corrections.

