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Four-tops @ LHC

Already very small...

o(ttW,ttZ,ttH...) ~ 600 fb each

a(tttt) ~ 12 fo ]

Measured cross-sections

ATLAS: 257/ fb

) +5.8
CMS: 12,625 fb

(Details in previous talk by Kong)
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Four-tops @ LHC

Already very small...
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Four-top production

Four tops
decays
+ ISR/FSR

Very
challenging
to model

Also its backgrounds ttZ, ttw. ttH... J



Browsing the data
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Browsing the data

* Flavour rescaling

* Sequential kinematic
reweighting
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Browsing the data
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Browsing the data

In multilepton and/or multijets/b, some results have tuning

— Quite clever technigues
— In principle do not modify results
— Some times after having seen the data



Browsing the data

In multilepton and/or multijets/b, some results have tuning
— Quite clever technigues

— In principle do not modify results

— Some times after having seen the data

But....

What if we are

missing something ?




Unsupervised ML @ four-tops

Unsupervised Learning Do
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Unsupervised ML @ four-tops

Unsupervised Learning =

Stringent selection
f LHC events

four-tops

ttH

Input Output

The algorithm recognizes similarities and differences and clusters the data



Unsupervised ML @ four-tops

What are we really
I} gaining by clustering?

Stringent selection
f LHC events
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Unsupervised ML @ four-tops

What are we really

Stringent selection
of LHC events

W31 gaining by clustering?

four-tops

ttH

No MC - No acceptances
— No Cross-sections
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Flakr
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Yes we are gaining:
Distributions in signal cluster
Distributions in background cluster
Tuning MC with background cluster Many

In signal region subtleties!
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Distributions in background cluster
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Unsupervised ML @ four-tops

We’'ve started studying

 Latent Dirichlet Allocation (LDA)
* Autoencoders (AE)
 Variational Autoencoders (VAE)
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Unsupervised ML @ four-tops

unsupervised clustering

tttt or ttw | _
~ 50 Input

neurons

Encoder Decoder
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unsupervised clustering

tttt or ttw | _
~ 50 Input

neurons

Nj and N,
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Encoder Decoder




Bayesian Inference @ four-tops

In N events

N & N, Real distributions
In Signal & Background

-/ given the data
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In N events

P(8|X) = P(X|8) x Prior(6)
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In N events

P(8|X) = P(X|8) x Prior(6)
P(X)

Basic principles N
princip N -
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Bayesian Inference @ four-tops

Unknown mixture!??
~ ,

P(8|X) = P(X|8) x Prior(6)
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Unknown mixture!??
~ ,
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Bayesian Inference @ four-tops

In N events

* ,

P(8|X) = P(X|8) x Prior(6)

EE

Solve Bayesian inference numerically

using Gibbs Sampling
(also EMCEE and others)




Bayesian Inference Results
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Posterior(6|X)éé
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P(8]X) = P(X|8) x Prior(8

P(X)

Inference correctly
approaches true Values!




Bayesian Inference Results
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Bayesian Inference @ four-tops

2LSS++ H

Select a
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Bayesian Inference to Tune Montecarlo using
get Signal and background features in signal region!
Background features

“Test” for NP!

tttt xsection

tttt distributions
Sample fractions
Etc....




Conclusions

 Unsupervised ML & Bayes provide a new way of using data
* Four-tops is a very suitable physics case

« Presented algorithm: As simple as providing all (N;,N,) pairs!
* Tune MC with Background in Signal region

 New ways to test for SM & NP @ four-tops

e Subtleties and details in upcoming arXiv:2106.XXXX. Also more to explore & understand.
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* Four-tops is a very suitable physics case

« Presented algorithm: As simple as providing all (N;,N,) pairs!

* Tune MC with Background in Signal region
 New ways to test for SM & NP @ four-tops
e Subtleties and details in upcoming arXiv:2106.XXXX. Also more to explore & understand.

More discussion after this session:
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Slices of corner-plot for 500 fb?
Full @ icas.unsam.edu.ar/sbox/corner_plot_bis.pdf
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7.2 Sequential kinematic reweighting

Following the flavour rescaling, a sequential reweighting is used to mitigate the kinematic mismodelling

observed in t1+jets MC. The reweighting corrects for the distributions of Niess» the number of large-R jets

(N R-jers): the scalar sum of all jet and lepton py in the event {H—i’}'}, and the average AR between any two

jets (ﬁR}ng_). These variables are related to the overall jet activities in the events and are observed to be
mismodelled, especially the N, and H—‘f“ spectra. These variables capture the most representative global
kinematics of the events, as well as kinematic properties of the individual jets such as py and their angular

distributions.

The ti+jets events in > 3b regions are reweighted according to the discrepancy between data and MC in
the 2b regions. The reweighting factors are derived such that the overall MC prediction matches the data in
the 2b regions. This i1s done based on the assumption that the deficiency of the radiation modelling in
the parton shower is independent of the flavour of the radiated jets. Systematic variations on the tf+jets
modelling cover possible deviations from such assumption.

Four-tops
ATLAS-CONF-2021-013
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Four-tops
ATLAS-CONF-2021-013

7.1 ti+jets flavour rescaling

The tr+jets flavour rescaling corrects for the overall yields of tr+light, tr+>1c and t1+>1b categories.
The rescaling factors are derived from a dedicated profile likelihood fit to data using the event yields in
the regions defined by various b-tagging requirements. Events with = 8/ in the 1L channel and > 6j
in the 2LOS channel are split into 2b, 3bL, 3bH and >4b regions, using the same criteria as defined in
Table 1. The fit exploits the different ti+jets flavour fractions in the eight fitted regions. The largest signal
to background ratio in these regions is 2.5%, estimated using MC prior to the fit. Systematic uncertainties
due to the tagging efficiency of b-jets and the mis-tag rate of ¢- and light-jets are considered as nuisance
parameters in the profile likelihood fit] The measured rescaling factors for rr+light] rf+=1c and rr+=15b
are 1.0=0.1, 1.6 0.2 and 1.3 £ 0.1, respectively, where the quoted uncertainties are from the statistical
uncertainty on data and from uncertainties on the b-tagging calibration.
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ATLAS CONF Note y
ATL AS ATLAS-CONF-2019-045 <7

EXPERIMENT 16th October 2019
Minor revision: 24th August 2020

Analysis of ttH and t{W production in multilepton
final states with the ATLAS detector

A search for the associated production of a top-quark pair with the Higgs boson (1fH) in
multilepton final states is presented. The search is based on a dataset of proton—proton
collisions at y/s = 13 TeV recorded with the ATLAS detector at the CERN Large Hadron
Collider and corresponding to an integrated luminosity of 80 fb~!. Six final states, defined
by the number and flavour of charged-lepton candidates, and 25 event categories are defined
to simultaneously search for the tfH signal and constrain several leading backgrounds. The
ttW background normalisation is left unconstrained in the statistical analysis and the resulting
tfW normalisation is found to be higher than the theoretical prediction. An excess of events
consistent with /7 H production, over the expected background from Standard Model processes,
is found with an observed significance of 1.8 standard deviations, compared to an expectation
of 3.1 standard deviations. Assuming Standard Model branching fractions, the best-fit value of
the 17H production cross section is o7y = 2947 18> fb, which is consistent with the Standard
Model prediction. The impact on the 17 H cross section measurement of the assumptions made
on the 7#W background modelling is discussed.

Four-tops
ATLAS-CONF-2019-045
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Eur. Phys. I. C (2016) 76:11 THE EUROPEAN
DOI 10.1140/epjc/s10052-015-3852-4 PHYSICAL JOURNAL C

CrossMark

 Regular Article - Experimental Physics

Measurements of fiducial cross-sections for #7 production with one
or two additional b-jets in pp collisions at /s =8 TeV using
the ATLAS detector

ATLAS Collaboration*

(see discussion in 1701.04427)

malised to the NNLO+NNLL result [32-37]. PYTHIA 8
offers several options for modelling g — bb splittings in
the final-state parton showers, which may be accessed by
varying the TIMESHOWER:WEIGHTGLUONTOQUARK (wgtq)
parameter [75]. Differences between the models arise by
neglecting (wgtq5) or retaining (wgtq3, wgtq6) the mass-
dependent terms in the g — bb splitting kernels. Differ-
ences also arise with respect to the treatment of the high-
m,; region, with specific models giving an enhanced or
suppressed g — bb rate. The model corresponding to
wgtq3 was chosen to maximise this rate. Finally, some of
the models (wgtqS, wgtq6) offer the possibility to choose
sgtq-m; instead of the transverse momentum as the argu-
ment of ag in the g — bb vertices. Here sgtq refers to
the TIMESHOWER:SCALEGLUONTOQUARK parameter, and is
allowed to vary in the range 0.25 < sgtq < 1, with larger
values giving a smaller g — bb rate and vice versa. For the
model wgtq5, sgtq was set to 1, a combination that minimises
the g — bb rate, while for wgtqb, sgtq was set to 0.25.
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Eur. Phys. I. C (2016) 76:379
DOT 10.1140epje/s10052-016-4105-x

THE EUROPEAN
PHYSICAL JOURNAL C

@ CrossMark

Measurement of tt production with additional jet activity,
including b quark jets, in the dilepton decay channel
using pp collisions at /s = 8 TeV

CMS Collaboration®

11. CMS Cﬂllabnratielm Measurement of the cross section ratio
Oiibb/ Oiijj 1 Pp collisions at /5 = 8 TeV. Phys. Lett. B 746, 132
(2015). doi:10.1016/j .phys!eth.?ﬂlﬁ.[]éi.ﬂﬁ[]. arXiv:1411.5621

(see discussion in 1701.04427)

PYTHIA6 and HERWIG6. The normalization factors applied
to the MADGRAPH and POWHEG predictions are found to be
about 1.3 for results related to the leading additional b jet. The
predictions from both generators underestimate the tthb cross
sections by a factor 1.8, in agreement with the results from
Ref. [11]. The normalization factors applied to MC@NLO are
approximately 2 and 4 for the leading and subleading addi-
tional b jet quantities, respectively, reflecting the observa-
tion that the generator does not simulate sufficiently large
jet multiplicities. All the predictions have slightly harder pt
spectra for the leading additional b jet than the data, while
they describe the behaviour of the || and my, distributions
within the current precision. The predictions favour smaller
A Ry, values than the measurement, although the differences
are in general within two standard deviations of the total
uncertainty.
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