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Also its backgrounds ttZ, ttW. ttH...



  

Browsing the data

Post-fit

Pre-fit

ttH
ATLAS-CONF-2019-045

(See 2011.06514 for NP on this mismatch)
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Browsing the data

What if we are
missing something ?

But….

In multilepton and/or multijets/b, some results have tuning

→ Quite clever techniques
→ In principle do not modify results
→ Some times after having seen the data
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Unsupervised ML @ four-tops

tttt or ttW
~ 50 input 
neurons

We find good S and B 
unsupervised clustering
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j
 and N
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Bayesian Inference @ four-tops

X=(N
j, 
N

b
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Prior knowledge
N
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 distributions

in tttt & ttW

In N events

P(θ|X) = P(X|θ) x Prior(θ)
                      P(X)

Bayes

Solve Bayesian inference numerically
using Gibbs Sampling

(also EMCEE and others)



  

     Nj(ttW)                  Nj(tttt)                     Nb(ttW)                Nb(tttt)               ttW fraction

Bayesian Inference Results

P(θ|X) = P(X|θ) x Prior(θ)   
                      P(X)

Posterior(θ|X)

Prior(θ)

Inference correctly 
approaches true Values!

(500 fb-1)



  

Bayesian Inference Results

Each parameter approaches 
the true values with the 
posterior!

        Corner-plot panels

true

prior

posterior

P
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C
or

re
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ns

(500 fb-1)



  

Bayesian Inference @ four-tops

2LSS++

“Test” for NP!

● tttt xsection
● tttt distributions
● Sample fractions
● Etc….

Select a 
signal 
region 
sample

Bayesian Inference to 
get Signal and 

Background features

Tune Montecarlo using 
background features in signal region!



  

Conclusions

● Unsupervised ML & Bayes provide a new way of using data

● Four-tops is a very suitable physics case

● Presented algorithm: As simple as providing all (Nj,Nb) pairs!

● Tune MC with Background in Signal region

● New ways to test for SM & NP @ four-tops

● Subtleties and details in upcoming arXiv:2106.XXXX. Also more to explore & understand.
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● Tune MC with Background in Signal region

● New ways to test for SM & NP @ four-tops

● Subtleties and details in upcoming arXiv:2106.XXXX. Also more to explore & understand.

More discussion after this session:

zoom.us/j/95915707476?pwd=NEdsekM5d05KVS9VZWdKOHEwY3l5QT09 

pass: 46941614

sequi@unsam.edu.ar



  

Backup slides

Slices of corner-plot for 500 fb-1

Full @ icas.unsam.edu.ar/sbox/corner_plot_bis.pdf

http://icas.unsam.edu.ar/sbox/corner_plot_bis.pdf
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