

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Theory Challenges in exclusive rare B decays

Javier Virto

Universitat de Barcelona

jvirto@ub.edu

LHCP 2021 - June 8th, 2021

▶ Anomalies in $b \rightarrow s\mu^+\mu^-$: (LHCb, Belle, ATLAS, CMS)

$$P_5'(B \to K^* \mu^+ \mu^-) \sim 3\sigma$$
; $\mathcal{B}(B_s \to \phi \mu^+ \mu^-) \sim 2\sigma$

 $\mathcal{B}(B o K^{(*)} \mu^+ \mu^-) \sim 1\sigma$; many others $\sim 0\sigma$

Combined (180 Observables) $\sim 5\sigma$

Significantly alleviated if

Descotes, Matias, Virto 2013

$$\mathcal{L}_{NP} \simeq (35 \,\mathrm{TeV})^{-2} \, [\bar{s} \gamma_{\nu} P_L b] [\bar{\mu} \gamma^{\nu} \mu]$$

▶ LFNU: (LHCb, Belle)

 $R_{K}, R_{K^*} \gtrsim 2\sigma; \quad Q_5 \equiv P'_{5\mu} - P'_{5e} \gtrsim 1\sigma$ Combined ~ 4σ Consistent^(*) with $b \to s\mu^+\mu^-$ Alonso, Camalich, Grinstein 2014

NP interpretation requires accurate TH predictions of $B \rightarrow M \ell^+ \ell^-$ obs

Javier Virto

Theory Challenges in exclusive rare B decays

► TH predictions require very involved and nontrivial **perturbative** and **non-perturbative** calculations.

▶ The fact that $\Lambda_{QCD} \ll m_b \ll \Lambda_{EW}, \Lambda_{BSM}$ helps a lot

► Weak Effective Theory:

$$\mathcal{L}_{WET} = \mathcal{L}_{QCD+QED} + \sum_{i} C_{i} O_{i}$$

Short distance C_i known in SM to NNLLBobeth, Misiak, Urban, Gorbahn Haisch,...BSM part of C_i is the target

► This leaves non-perturbative MEs as the leading challenge

Javier Virto

Theory Challenges in exclusive rare B decays

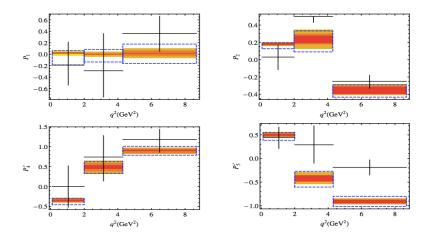
What we need depends on mode and observable. E.g.:

- ▶ $B_q \rightarrow \ell^+ \ell^-$ needs f_{B_q} (up to QED...)
- ► $B \rightarrow D^{(*)} \ell \nu$ needs **local** form factors (3 for *D*, 7 for D^*)
- $\blacktriangleright \ \mathcal{R}_{D^{(*)}}$ needs local form factor ratios
- $\blacktriangleright b \rightarrow s\ell\ell$ needs both local and non-local form factors
 - + ${\mathcal B}$ needs all (3 for K, 7 for ${\it K}^*,\phi$)
 - Ratios such as P'_5 need only ratios (SCET & HQET relations)
 - $\mathcal{R}_{K,K^*,...}$ (LFNU) almost exact cancellation of FFs (both local and non-local) within SM, but NOT in LFNU BSM in general
 - QED effects relevant in LFNU ratios and angular distributions

Theory predictions

Example of error breakdown (2014)

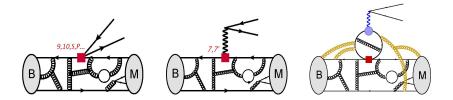
Descotes-Genon, Hofer, Matias, Virto 2014



Javier Virto

Theory Challenges in exclusive rare B decays

Anatomy of $B \rightarrow M_{\lambda} \ell^+ \ell^-$ EFT Amplitudes

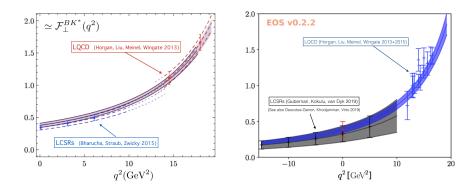


$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

► Local (Form Factors) : $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

► Non-Local :
$$\mathcal{H}_{\lambda}(q^2) = i \mathcal{P}^{\lambda}_{\mu} \int d^4x \, e^{iq \cdot x} \, \langle \bar{M}_{\lambda}(k) | T \{ \mathcal{J}^{\mu}_{em}(x), \mathcal{C}_i \, \mathcal{O}_i(0) \} | \bar{B}(q+k) \rangle$$

Local Form Factors



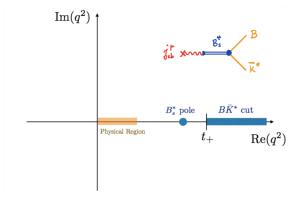
- Two main approaches: (1) Lattice QCD (large q^2) (2) LCSRs (low q^2)
- ▶ Two approaches to LCSRs, in terms of (1) K* LCDAs (2) B LCDAs
- \triangleright q^2 dependence can be parametrized model-independently

Javier Virto

Theory Challenges in exclusive rare B decays

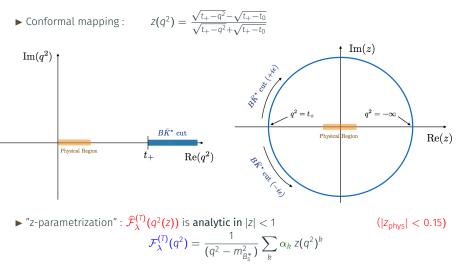
Local Form Factors : q^2 -dependence from analyticity

 $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$: Analytic structure in q^2 :



 $\widehat{\mathcal{F}}_{\lambda}^{(T)}(q^2) \equiv (q^2 - m_{B_c}^2) \, \mathcal{F}_{\lambda}^{(T)}(q^2)$ has no pole, only cut.

Local Form Factors : q^2 -dependence from analyticity

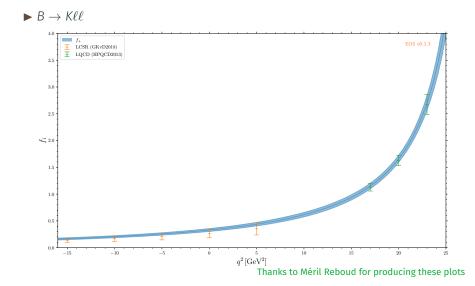


Bourrely, Caprini, Lellouch; Boyd, Grinstein, Lebed; Caprini, Lellouch, Neubert; ...

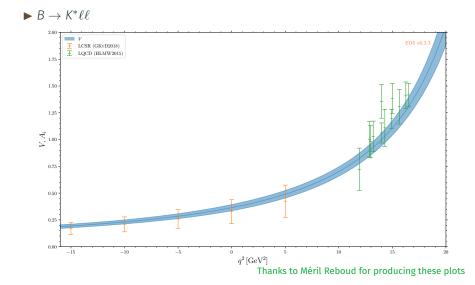
Javier Virto

Theory Challenges in exclusive rare B decays

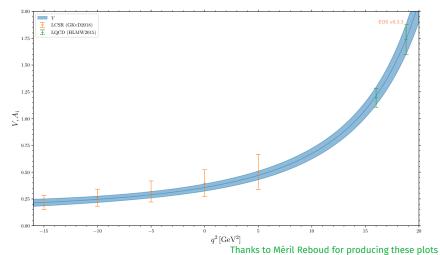
Local Form Factors : New Fits to (B-DAs) LCSRs + LQCD



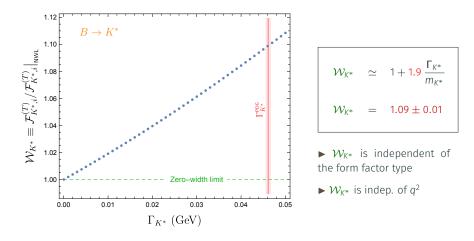
Local Form Factors : New Fits to (B-DAs) LCSRs + LQCD



Local Form Factors : New Fits to (B-DAs) LCSRs + LQCD

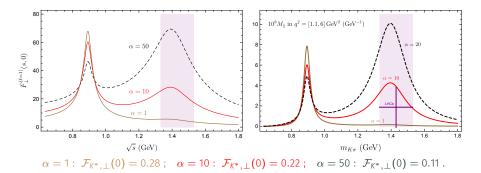


Local Form Factors : Finite-width effects



 \Rightarrow BRs are corrected by a factor $|\mathcal{W}_{K^*}|^2 \simeq 1.2$. Ratios unaffected.

Set $\mathcal{F}_{K^*(1410)} = \alpha \mathcal{F}_{K^*(892)}$ with α a floating parameter



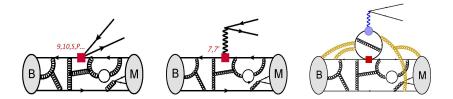
Constrained by angular measurements on 1430 region (LHCb)

Javier Virto

Theory Challenges in exclusive rare B decays

June 8th, 2021

Non-Local Form Factors



$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

► Local (Form Factors): $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

► Non-Local :
$$\mathcal{H}_{\lambda}(q^2) = i \mathcal{P}^{\lambda}_{\mu} \int d^4 x \, e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | \mathcal{T} \{ \mathcal{J}^{\mu}_{em}(x), \mathcal{C}_i \mathcal{O}_i(0) \} | \bar{B}(q+k) \rangle$$

$$\mathcal{H}^{\mu}(q,k) = i \int d^4 x \ e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | \mathcal{T} \{ \mathcal{J}^{\mu}_{\text{em}}(x), \mathcal{C}_i \mathcal{O}_i(0) \} | \bar{B}(q+k) \rangle$$

• Large- q^2 : Dominated by $x \sim 0$ (short-distance dominance - OPE)

Grinstein, Pirjol; Beylich, Buchalla, Feldmann

• Low- q^2 : Dominated by $x^2 \sim 0$ (light-cone dominance - LCOPE)

Khodjamirian, Mannel, Pivovarov, Wang

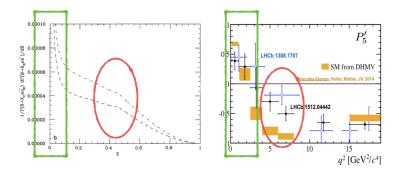
+ Must analytically-continue from OPE region to physical region

Non-local form factors: Importance of on-shell cuts

▶ QCD Factorization Beneke, Feldmann, Seidel 2001

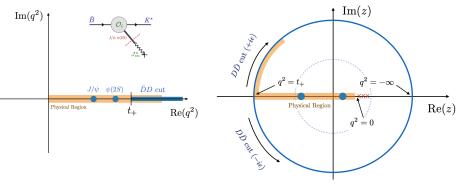
$$\mathcal{H}_{\lambda}(q^{2}) \sim \Delta C_{9}^{\lambda}(q^{2}) \mathcal{F}_{\lambda}(q^{2}) + \frac{1}{q^{2}} \Delta C_{7}^{\lambda}(q^{2}) \mathcal{F}_{\lambda}^{T}(q^{2}) + HSS + \mathcal{O}(\Lambda/m_{B}, \Lambda/E)$$

▶ It is assumed that the charm loop is dominated by short distances



• Kink at $q^2 = 4m_c^2$ symptom of breaking of perturbativity

z-Parametrization for Non-Local FFs

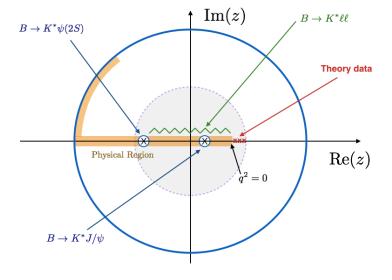


- $\blacktriangleright \hat{\mathcal{H}}_{\lambda}(q^2(z)) = (q^2 M_{J/\psi}^2)(q^2 M_{\psi(2S)}^2) \mathcal{H}_{\lambda}(q^2) \quad \text{is analytic in } |z| < 1$
- ► Taylor expand $\hat{\mathcal{H}}_{\lambda}(z)$ around z = 0: $\hat{\mathcal{H}}_{\lambda}(z) = \left[\sum_{k=0}^{K} \alpha_k^{(\lambda)} z^k\right] \mathcal{F}_{\lambda}(z)$
- \blacktriangleright Expansion needed for $|z| < 0.52~(-7\,{\rm GeV^2} \le q^2 \le 14{\rm GeV^2}$)

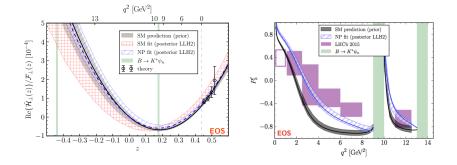
Javier Virto

Theory Challenges in exclusive rare B decays

Fit to z-parametrisation



Fit to *z*-parametrisation



Fit includes $B \to K^* \psi$, theory at $q^2 < 0$ (Khojamirian et al 2010) for SM prior and $B \to K^* \mu \mu$ with $C_9^{\text{NP}} = -1$ for NP posterior.

► Analytic calculation of leading order OPE matching at NLO

Asatrian, Greub, Virto 2019

▶ Recalculation of subleading LCOPE contributions ($q^2 \leq 0$)

Gubernari, van Dyk, Virto 2020

$$\mathcal{H}_{\lambda}(q^{2}) = \Delta C_{9}(q^{2}) \mathcal{F}_{\lambda}(q^{2}) + \Delta C_{7}(q^{2}) \mathcal{F}_{\lambda}^{\mathsf{T}}(q^{2}) + \tilde{\mathcal{V}}_{\lambda}(q^{2}) + \cdots$$

Dispersive bound for z-expansion

Gubernari, van Dyk, Virto 2020

$$\begin{split} \hat{\mathcal{H}}_{\lambda}^{B \to M}(z) &= \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} p_{n}^{B \to M}(z) \\ &\sum_{n=0}^{\infty} \left\{ 2 \left| a_{0,n}^{B \to K} \right|^{2} + \sum_{\lambda = \perp, \parallel, 0} \left[2 \left| a_{\lambda,n}^{B \to K^{*}} \right|^{2} + \left| a_{\lambda,n}^{B_{s} \to \phi} \right|^{2} \right] \right\} < 1. \end{split}$$

Javier Virto

Theory Challenges in exclusive rare B decays

June 8th, 2021

Recalculation of subleading LCOPE contributions

Recalculation of charm-loop effect

Gubernari, van Dyk, Virto, 2011.09813

Transition	$ ilde{\mathcal{V}}(q^2=1{ m GeV}^2)$	This work	Ref. [11]
$B \to K$	$\mathcal{ ilde{A}}$	$(+4.9\pm2.8)\cdot10^{-7}$	$(-1.3^{+1.0}_{-0.7})\cdot 10^{-4}$
$B \to K^*$	$ ilde{\mathcal{V}}_1$	$(-4.4\pm3.6)\cdot10^{-7}{ m GeV}$	$(-1.5^{+1.5}_{-2.5}) \cdot 10^{-4} \mathrm{GeV}$
	$ ilde{\mathcal{V}}_2$	$(+3.3\pm2.0)\cdot10^{-7}{\rm GeV}$	$(+7.3^{+14}_{-7.9})\cdot 10^{-5}{ m GeV}$
	$ ilde{\mathcal{V}}_3$	$(+1.1\pm1.0)\cdot10^{-6}{\rm GeV}$	$(+2.4^{+5.6}_{-2.7})\cdot 10^{-4}{\rm GeV}$
$B_s \to \phi$	$\tilde{\mathcal{V}}_1$	$(-4.4\pm5.6)\cdot10^{-7}{ m GeV}$	_
	$ ilde{\mathcal{V}}_2$	$(+4.3\pm3.1)\cdot10^{-7}{ m GeV}$	—
	$ ilde{\mathcal{V}}_3$	$(+1.7\pm2.0)\cdot10^{-6}{\rm GeV}$	

- ► We reproduce the result of KMPW'2010
- ▶ We incude complete set of 3-particle LCDAs Braun, Li, Manashov 2017
- ► Cancellations + Parametric lead to a reduction of the effect of two orders of magnitude
- ► Local matrix elements $\lambda_{E,H}$ crucial in this cancellation. Revisit (see e.g. Rahimi, Wald 2020)

► Theory predictions in *B* decays require calculation of **local** and **non-local** form factors

▶ Local form factors are fitted to a *z*-expansion using LCSRs and LQCD, with good and consistent results with 10% uncertainties. We mostly rely on LQCD for improvements. Finite width and non-resonant effects must be controlled from the continnum/experimental sides.

► Non-local form factors are the bottleneck, but understanding and strategy has improved in recent years. We should reconfirm rapid convergence of OPE and test convergence of *z*-expansion.

▶ New Theory Predictions for exclusive $b \rightarrow s\ell\ell$ observables will require data and a "global" approach (simultaneous fits to LQCD+LCSRs+data). Still work in progress (with consistent LCSRs all with *B*-DAs). Current global fits still use 2015 technology.

Extra

We write

$$\mathcal{H}^{\mu}(q,k) = \langle \bar{M}_{\lambda}(k) | \mathcal{K}^{\mu}(q) | \bar{B}(q+k) \rangle$$

With the operator $\mathcal{K}^{\mu}(q)$ given by

$$\mathcal{K}^{\mu}(q) = i \int d^4 x \, e^{iq \cdot x} \, \mathcal{T} \big\{ \mathcal{J}^{\mu}_{\mathrm{em}}(x), \mathcal{C}_i \, \mathcal{O}_i(0) \big\}$$

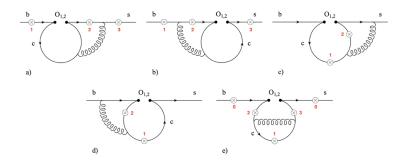
It turns out that: Leading-order OPE = Leading order LCOPE

 $\mathcal{K}^{\mu}_{\rm OPE}(q) = \Delta C_9(q^2) \left(q^{\mu} q^{\nu} - q^2 g^{\mu\nu} \right) \bar{s} \gamma_{\nu} P_L b + \Delta C_7(q^2) 2im_b \bar{s} \sigma^{\mu\nu} q_{\nu} P_R b + \cdots$

With this we have:

$$\mathcal{H}^{\mu}_{\text{OPE}}(q,k) = \Delta C_9(q^2) \big(q^{\mu} q^{\nu} - q^2 g^{\mu\nu} \big) \mathcal{F}_{\nu} + 2im_b \, \Delta C_7(q^2) \mathcal{F}^{\mathsf{T}\mu} + \cdots$$

Objective: Fully analytical calculation in two variables: q^2 and m_c .



Two-loop Master Integrals

$$J_i(q^2, m_c) = (2\pi)^{-2d} \int \frac{(m_b^2)^{N_i - 4} (\tilde{\mu}^2)^{2\epsilon} d^d \ell d^d r}{P_{i_1}^{n_{i_1}} P_{i_2}^{n_{i_2}} P_{i_3}^{n_{i_3}} P_{i_4}^{n_{i_4}} P_{i_5}^{n_{i_5}} P_{i_6}^{n_{i_7}} P_{i_7}^{n_{i_7}}}$$

$$P_{1} = (\ell + q)^{2} - m_{c}^{2} \qquad P_{5} = (r + p - q)^{2} \qquad P_{9} = \ell \cdot q$$

$$P_{2} = \ell^{2} - m_{c}^{2} \qquad P_{6} = r \cdot q \qquad P_{10} = (r + p - q)^{2} - m_{b}^{2}$$

$$P_{3} = (\ell + r)^{2} - m_{c}^{2} \qquad P_{7} = \ell \cdot (p - q) \qquad P_{11} = (r + p)^{2} - m_{b}^{2}$$

$$P_{4} = r^{2} \qquad P_{8} = (r + p)^{2} \qquad P_{12} = (\ell + r + q)^{2} - m_{c}^{2}$$

$$P_{13} = r \cdot (p - q)$$

Henn 2013

Differential Equations in Canonical Form

$$J_{i}(q^{2},m_{c}) = (2\pi)^{-2d} \int \frac{(m_{b}^{2})^{N_{i}-4} (\tilde{\mu}^{2})^{2\epsilon} d^{d}\ell d^{d}r}{P_{i_{1}}^{n_{i_{1}}} P_{i_{2}}^{n_{i_{2}}} P_{i_{3}}^{n_{i_{3}}} P_{i_{4}}^{n_{i_{4}}} P_{i_{5}}^{n_{i_{5}}} P_{i_{6}}^{n_{i_{6}}} P_{i_{7}}^{n_{i_{7}}}}$$

$$\partial_{x}J_{i,k}(\epsilon, x, y) = a_{i,x}^{k\ell}(\epsilon, x, y)J_{i,\ell}(\epsilon, x, y), \quad \partial_{y}J_{i,k}(\epsilon, x, y) = a_{i,y}^{k\ell}(\epsilon, x, y)J_{i,\ell}(\epsilon, x, y),$$

 \rightarrow Transformation to "Canonical" Basis: $\vec{M}(x,y) = T(\epsilon,x,y) \cdot \vec{J}(x,y)$

$$\partial_{x}\vec{M}(\epsilon, x, y) = \epsilon \ A_{x}(x, y) \ \vec{M}(\epsilon, x, y) \quad ; \quad \partial_{y}\vec{M}(\epsilon, x, y) = \epsilon \ A_{y}(x, y) \ \vec{M}(\epsilon, x, y)$$

Iterative solution of DEs

$$\partial_{X}\vec{M}(\epsilon, X, y) = \epsilon \ A_{X}(X, y) \ \vec{M}(\epsilon, X, y) \quad ; \quad \partial_{y}\vec{M}(\epsilon, X, y) = \epsilon \ A_{y}(X, y) \ \vec{M}(\epsilon, X, y)$$

$$\vec{M}(\epsilon, x, y) = \sum_{n=0}^{\infty} \epsilon^n \vec{M}_n(x, y)$$

$$\partial_{x,y}\vec{M}_n(x,y) = A_{x,y}(x,y)\vec{M}_{n-1}(x,y)$$

Iterative solution of DEs First *y* dependence, then *x*:

$$\begin{split} \vec{M}_{0}(x,y) &= \vec{C}_{0}(x) ,\\ \vec{M}_{1}(x,y) &= \sum_{j_{1}} \left[A_{y}^{j_{1}} G(w_{j_{1}}(x);y) \right] \vec{C}_{0}(x) + \vec{C}_{1}(x) ,\\ \vec{M}_{2}(x,y) &= \sum_{j_{2},j_{1}} \left[A_{y}^{j_{2}} A_{y}^{j_{1}} G(w_{j_{2}}(x),w_{j_{1}}(x);y) \right] \vec{C}_{0}(x) \\ &+ \sum_{j_{2}} \left[A_{y}^{j_{2}} G(w_{j_{2}}(x);y) \right] \vec{C}_{1}(x) + \vec{C}_{2}(x) ,\\ \end{split}$$

$$\vec{M}_3(x,y) = \cdots$$

lavier Virto

(1)

Iterative solution of DEs

Solutions in terms of Generalized Polylogarithms (GPLs)

Goncharov 1998

$$G(w_1, \dots, w_n; y) = \int_0^y \frac{dt}{t - w_1} G(w_2, \dots, w_n; t); \quad G(; y) = 1; \quad G(\vec{0}_n; x) = \frac{\log^n x}{n!}$$

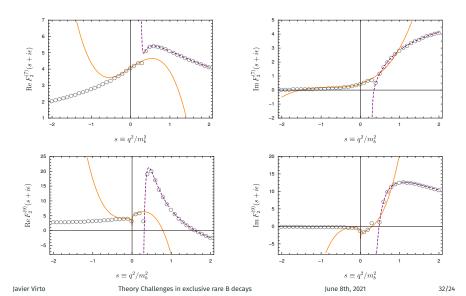
i.e

$$G(1; x) = \log(1 - x)$$
, $G(0, 1; x) = -Li_2(x)$, $G(0, 0, 1; x) = -Li_3(x)$...

Fast numerical evaluation of general GPLs in the complex plane available (C++, python, matlab, ...)

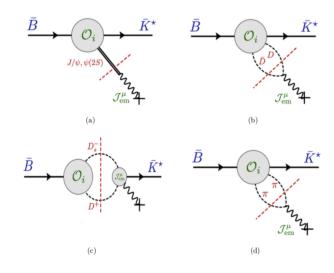
Matching calculation at NLO

Results: Comparison to previous calculations:

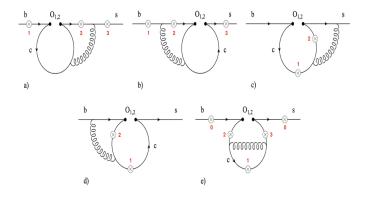


Matching calculation at NLO

Preparing the analytic continuation to physical q^2

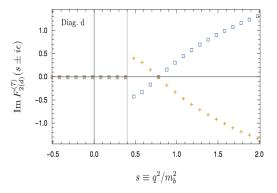


Preparing the analytic continuation to physical q^2

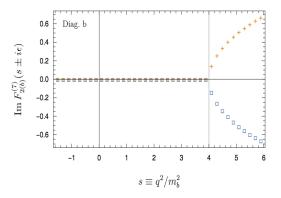


Checking analytic structure of $\mathcal{H}(q^2)$

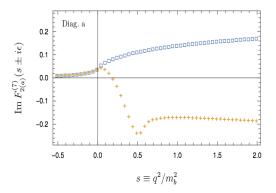
Checking analytic structure of $\mathcal{H}(q^2)$



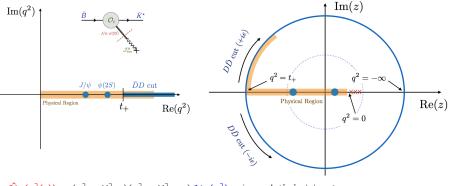
Checking analytic structure of $\mathcal{H}(q^2)$



Checking analytic structure of $\mathcal{H}(q^2)$



z-parametrisation for $\mathcal{H}_{\lambda}(q^2)$



 $\blacktriangleright \hat{\mathcal{H}}_{\lambda}(q^2(z)) = (q^2 - M_{J/\psi}^2)(q^2 - M_{\psi(2S)}^2) \mathcal{H}_{\lambda}(q^2) \quad \text{is analytic in } |z| < 1$

► Taylor expand $\hat{\mathcal{H}}_{\lambda}(z)$ around z = 0:

$$\hat{\mathcal{H}}_{\lambda}(z) = \left[\sum_{k=0}^{K} \alpha_{k}^{(\lambda)} z^{k}\right] \mathcal{F}_{\lambda}(z)$$

 \blacktriangleright Expansion needed for |z| < 0.52 ($-7\,{\rm GeV^2} \le q^2 \le 14{\rm GeV^2}$)

Javier Virto

Theory Challenges in exclusive rare B decays

Bobeth, Chrzaszcz, van Dyk, Virto 2017

Experimental constraints :

▶ The residues of the poles are given by $B \rightarrow K^* \psi_n$:

$$\mathcal{H}_{\lambda}(q^2 \to M_{\psi_n}^2) \sim \frac{M_{\psi_n} f_{\psi_n}^* \mathcal{A}_{\lambda}^{\psi_n}}{M_B^2 (q^2 - M_{\psi_n}^2)} + \cdots$$

► Angular analyses Belle, Babar, LHCb determine :

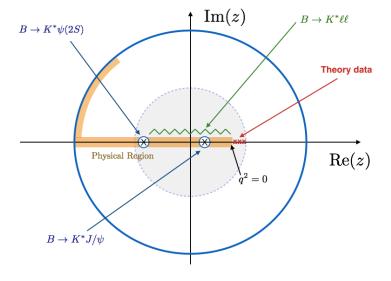
$$\begin{split} |r_{\perp}^{\psi_n}|, |r_{\parallel}^{\psi_n}|, |r_{0}^{\psi_n}|, \arg\{r_{\perp}^{\psi_n}r_{0}^{\psi_n*}\}, \arg\{r_{\parallel}^{\psi_n}r_{0}^{\psi_n*}\} \end{split}$$
 where
$$r_{\lambda}^{\psi_n} \equiv \underset{q^2 \to M_{\psi_n}^2}{\operatorname{Res}} \frac{\mathcal{H}_{\lambda}(q^2)}{\mathcal{F}_{\lambda}(q^2)} \sim \frac{M_{\psi_n}f_{\psi_n}^*\mathcal{A}_{\lambda}^{\psi_n}}{M_B^2 \mathcal{F}_{\lambda}(M_{\psi_n}^2)}$$

▶ We produce correlated pseudo-observables from a fit (5+5).

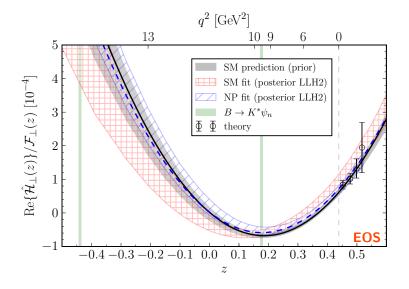
Javier Virto

Theory Challenges in exclusive rare B decays

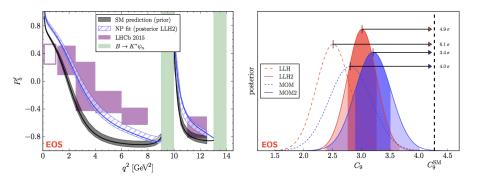
Fit to z-parametrisation



Fit to *z*-parametrisation



SM predictions and Fit including $B o K^* \mu^+ \mu^-$ data and $\mathcal{C}_9^{\mathrm{NP}}$:

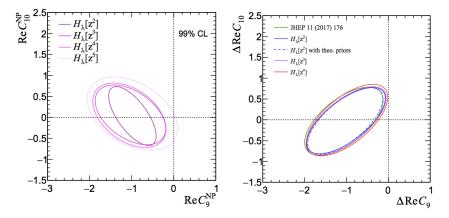


The NP hypothesis with $C_{q}^{NP} \sim -1$ is favored strongly in the global fit

Prospects: LHC Run-2 unbinned fits to z-parametrization

Chrzaszcz, Mauri, Serra, Coutinho, van Dyk 1805.06378

Mauri, Serra, Coutinho 1805.06401



Unbinned fits to $B \to K^* \mu \mu$ (Left) and $B \to K^* \ell \ell$ (Right)

Javier Virto

$$\Pi^{\mu\nu}(q) \equiv i \int d^4x \, e^{iq \cdot x} \langle 0|T\left\{O^{\mu}(q;x), O^{\nu,\dagger}(q;0)\right\}|0\rangle = \left(\frac{q^{\mu}q^{\nu}}{q^2} - g^{\mu\nu}\right) \Pi(q^2)$$

Here, the operators $O^{\mu}(q; x)$ and $O^{\dagger,\nu}(q; 0)$ are defined as

$$O^{\mu}(q; x) = \left(\frac{-16\pi^{2}i}{q^{2}}\right) \int d^{4}y \, e^{+iq \cdot y} \, T\left\{j_{\text{em}}^{\mu}(x+y), (C_{1}\mathcal{O}_{1}+C_{2}\mathcal{O}_{2})(x)\right\},$$
$$O^{\nu,\dagger}(q; 0) = \left(\frac{+16\pi^{2}i}{q^{2}}\right) \int d^{4}z \, e^{-iq \cdot z} \, T\left\{j_{\text{em}}^{\nu}(z), (C_{1}\mathcal{O}_{1}+C_{2}\mathcal{O}_{2})^{\dagger}(0)\right\}.$$

Twice-subtracted dispersion relation:

$$\chi^{\text{OPE}}(Q^2) \equiv \frac{1}{2i\pi} \int_0^\infty ds \; \frac{\text{Disc}_{b\bar{s}} \Pi^{\text{had}}(s)}{(s-Q^2)^3}$$

$$\begin{aligned} &\frac{3}{32i\pi^{3}}\operatorname{Disc}_{b\overline{s}}\Pi^{had}(s) = \frac{2M_{B}^{4}\lambda^{3/2}(M_{B}^{2},M_{K}^{2},s)}{s^{4}} \left|\mathcal{H}_{0}^{B\to K}(s)\right|^{2}\theta(s-s_{BK}) \\ &+ \frac{2M_{B}^{6}\sqrt{\lambda(M_{B}^{2},M_{K^{*}}^{2},s)}}{s^{3}} \left(\left|\mathcal{H}_{\perp}^{B\to K^{*}}(s)\right|^{2} + \left|\mathcal{H}_{\parallel}^{B\to K^{*}}(s)\right|^{2} + \frac{M_{B}^{2}}{s}\left|\mathcal{H}_{0}^{B\to K^{*}}(s)\right|^{2}\right)\theta(s-s_{BK^{*}}) \\ &+ \frac{M_{B}^{6}\sqrt{\lambda(M_{B_{s}}^{2},M_{\phi}^{2},s)}}{s^{3}} \left(\left|\mathcal{H}_{\perp}^{B_{s}\to\phi}(s)\right|^{2} + \left|\mathcal{H}_{\parallel}^{B_{s}\to\phi}(s)\right|^{2} + \frac{M_{B}^{2}}{s}\left|\mathcal{H}_{0}^{B_{s}\to\phi}(s)\right|^{2}\right)\theta(s-s_{BS\phi}) \end{aligned}$$

+ further positive terms

Javier Virto

Redefine \mathcal{H}_i as before:

$$\begin{aligned} \hat{\mathcal{H}}_{0}^{B \to P}(z) &\equiv \phi_{0}^{B \to P}(z) \, \mathcal{P}(z) \, \mathcal{H}_{0}^{B \to P}(z) \,, \\ \hat{\mathcal{H}}_{\lambda}^{B \to V}(z) &\equiv \phi_{\lambda}^{B \to P}(z) \, \mathcal{P}(z) \, \mathcal{H}_{\lambda}^{B \to P}(z) \,, \end{aligned}$$

Expand in ortogonal polynomials in unit circle:

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} \rho_n^{B \to M}(z)$$

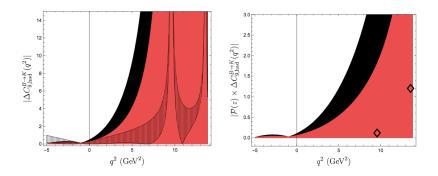
The dispersive bound then takes the simple form

$$\sum_{n=0}^{\infty} \left\{ 2 \left| a_{0,n}^{B \to K} \right|^2 + \sum_{\lambda = \perp, \parallel, 0} \left[2 \left| a_{\lambda,n}^{B \to K^*} \right|^2 + \left| a_{\lambda,n}^{B_s \to \phi} \right|^2 \right] \right\} < 1.$$

Javier Virto

Example:

$$\Delta C_{9,\text{had}}^{B \to K}(q^2) = \frac{32\pi^2 M_B^2}{q^2} \frac{\mathcal{H}_0^{B \to K}(q^2)}{\mathcal{F}_0^{B \to K}(q^2)}$$



Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006

Con

► Traditionally, $h(k) = K^* + continuum \Rightarrow 2 \operatorname{Im} \mathcal{P}_{ab}(k,q) \sim f_K^* F^{BK*} \delta(k^2 - m_{K^*}) + \cdots$

Light-Cone Sum Rules with B-meson LCDAs

Khodjamirian, Mannel, Offen 2006

► Traditionally, $h(k) = K^* + continuum \Rightarrow 2 \operatorname{Im} \mathcal{P}_{ab}(k,q) \sim f_K^* F^{\mathsf{BK}*} \delta(k^2 - m_{K^*}) + \cdots$

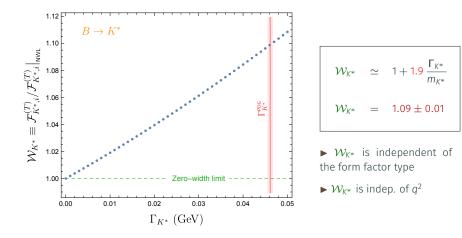
▶ Generalization for unstable mesons cheng, Khodjamirian, Virto 2017 : $h(k) = K\pi + \cdots$

LCSRs with B-meson DAs, natural for this generalization.

Javier Virto

Theory Challenges in exclusive rare B decays

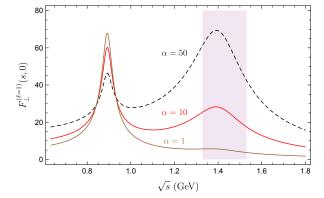
June 8th, 2021



 \Rightarrow BRs are corrected by a factor $|\mathcal{W}_{K^*}|^2 \simeq 1.2$. Ratios unaffected.

Beyond the K*(892)

Set $\mathcal{F}_{K^*(1410)} = \alpha \mathcal{F}_{K^*(892)}$ with α a floating parameter

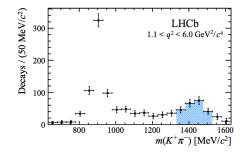


 $\alpha = 1: \ \mathcal{F}_{K^*,\perp}(0) = 0.28; \ \alpha = 10: \ \mathcal{F}_{K^*,\perp}(0) = 0.22; \ \alpha = 50: \ \mathcal{F}_{K^*,\perp}(0) = 0.11.$

Differential decay rate including S,P,D waves – – [$d\Omega = d\cos\theta_{\ell} d\cos\theta_{K} d\phi$]

$$\frac{d\Gamma}{dq^2 dk^2 d\Omega} = \frac{1}{4\pi} \sum_{i=1}^{41} f_i(\Omega) \tilde{\Gamma}_i(q^2, k^2)$$

The 41 moments $\tilde{\Gamma}_i(q^2, k^2)$ have been measured by LHCb (arXiv: 1609.04736) in the bins $\sqrt{k^2} \in [1.33, 1.53]$ GeV , $q^2 \in [1.1, 6]$ GeV²

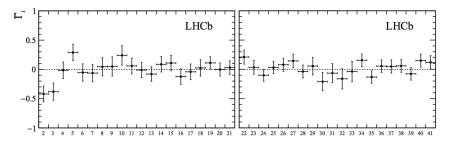


Differential decay rate including S,P,D waves – – [$d\Omega = d \cos \theta_{\ell} d \cos \theta_{K} d\phi$]

$$\frac{d\Gamma}{dq^2 dk^2 d\Omega} = \frac{1}{4\pi} \sum_{i=1}^{41} f_i(\Omega) \tilde{\Gamma}_i(q^2, k^2)$$

The 41 moments $\tilde{\Gamma}_i(q^2,k^2)$ have been measured by LHCb (arXiv: 1609.04736) in the bins

 $\sqrt{k^2} \in [1.33, 1.53] \text{GeV}$, $q^2 \in [1.1, 6] \text{GeV}^2$



Differential decay rate including S,P,D waves – – [$d\Omega = d\cos\theta_\ell \, d\cos\theta_K \, d\phi$]

$$\frac{d\Gamma}{dq^2 dk^2 d\Omega} = \frac{1}{4\pi} \sum_{i=1}^{41} f_i(\Omega) \tilde{\Gamma}_i(q^2, k^2)$$

The 41 moments $\tilde{\Gamma}_i(q^2, k^2)$ depend on *S*, *P*, *D*-wave amplitudes:

i	$f_i(\Omega)$	$\Gamma^{L, ext{tr}}_i(q^2)/\mathbf{k}q^2$	$\eta_i^{L \to R}$
1	$P_{0}^{0}Y_{0}^{0}$	$\left[H_0^L ^2 + H_{\parallel}^L ^2 + H_{\perp}^L ^2 + S^L ^2 + D_0^L ^2 + D_{\parallel}^L ^2 + D_{\perp}^L ^2\right]$	+1
2	$P_{1}^{0}Y_{0}^{0}$	$2\left[\frac{2}{\sqrt{5}}Re(H_{0}^{L}D_{0}^{L*}) + Re(S^{L}H_{0}^{L*}) + \sqrt{\frac{3}{5}}Re(H_{\parallel}^{L}D_{\parallel}^{L*} + H_{\perp}^{L}D_{\perp}^{L*})\right]$	+1
3	$P_{2}^{0}Y_{0}^{0}$	$\frac{\sqrt{5}}{7} \left(D_{\parallel}^{L} ^{2} + D_{\perp}^{L} ^{2} \right) - \frac{1}{\sqrt{5}} \left(H_{\parallel}^{L} ^{2} + H_{\perp}^{L} ^{2} \right) + \frac{2}{\sqrt{5}} H_{0}^{L} ^{2} + \frac{10}{7\sqrt{5}} D_{0}^{L} ^{2} + 2 \operatorname{Re}(S^{L}D_{0}^{L*})$	$^{+1}$
4	$P_{3}^{0}Y_{0}^{0}$	$rac{6}{\sqrt{35}}\left[-Re(H_{\parallel}^LD_{\parallel}^{L*}+H_{\perp}^LD_{\perp}^{L*})+\sqrt{3}Re(H_0^LD_0^{L*}) ight]$	+1
5	$P_{4}^{0}Y_{0}^{0}$	$rac{2}{7}\left[-2(D_{\parallel}^{L} ^{2}+ D_{\perp}^{L} ^{2})+3 D_{0}^{L} ^{2} ight]$	+1
6	$P_{0}^{0}Y_{2}^{0}$	$\tfrac{1}{2\sqrt{5}} \left[\left(D_{\parallel}^L ^2 + D_{\perp}^L ^2 \right) + \left(H_{\parallel}^L ^2 + H_{\perp}^L ^2 \right) - 2 S^L ^2 - 2 D_0^L ^2 - 2 H_0^L ^2 \right]$	$^{+1}$
7	$P_{1}^{0}Y_{2}^{0}$	$\left[\tfrac{\sqrt{3}}{5} Re(H_{\parallel}^L D_{\parallel}^{L*} + H_{\perp}^L D_{\perp}^{L*}) - \tfrac{2}{\sqrt{5}} Re(S^L H_0^{L*}) - \tfrac{4}{5} Re(H_0^L D_0^{L*}) \right]$	+1
8	$P_{2}^{0}Y_{2}^{0}$	$\left[\frac{1}{14} (D_{\parallel}^L ^2 + D_{\perp}^L ^2) - \frac{2}{7} D_0^L ^2 - \frac{1}{10} (H_{\parallel}^L ^2 + H_{\perp}^L ^2) - \frac{2}{5} H_0^L ^2 - \frac{2}{\sqrt{5}} Re(S^L D_0^{L\star}) \right]$	+1
9	$P_{3}^{0}Y_{2}^{0}$	$-rac{3}{5\sqrt{7}}\left[ext{ Re}(H_\parallel^L D_\parallel^{L*} + H_\perp^L D_\perp^{L*}) + 2\sqrt{3} ext{ Re}(H_0^L D_0^{L*}) ight]$	$^{+1}$
10	$P_{4}^{0}Y_{2}^{0}$	$-rac{2}{7\sqrt{5}}\left[D_{\parallel}^{L} ^{2}+ D_{\perp}^{L} ^{2}+3 D_{0}^{L} ^{2} ight]$	+1
11	$P_1^1\sqrt{2}Re(Y_2^1)$	$-rac{3}{\sqrt{10}}\left[\sqrt{rac{2}{3}}Re(H^L_{\parallel}S^{L*})-\sqrt{rac{2}{15}}Re(H^L_{\parallel}D^{L*}_0)+\sqrt{rac{2}{5}}Re(D^L_{\parallel}H^{L*}_0) ight]$	+1
12	$P_{2}^{1}\sqrt{2}Re(Y_{2}^{1})$	$-rac{3}{\pi}\left[\operatorname{Re}(H^L_{\scriptscriptstyle \operatorname{I\hspace{01cm}I}}H^{L*}_{\scriptscriptstyle \operatorname{O}})+\sqrt{rac{5}{\pi}}\operatorname{Re}(D^L_{\scriptscriptstyle \operatorname{I\hspace{01cm}I}}S^{L*})+rac{5}{-\pi}\operatorname{Re}(D^L_{\scriptscriptstyle \operatorname{I\hspace{01cm}I}}D^{L*}_{\scriptscriptstyle \operatorname{O}}) ight]$	+1

Combinations of moments depending only on P-wave:

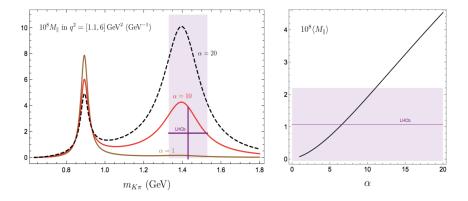
$$\begin{split} |\widehat{A}_{\parallel}^{L}|^{2} + |\widehat{A}_{\parallel}^{R}|^{2} &= \frac{1}{36} (5\widetilde{\Gamma}_{1} - 7\sqrt{5}\widetilde{\Gamma}_{3} + 5\sqrt{5}\widetilde{\Gamma}_{6} - 35\widetilde{\Gamma}_{8} - 5\sqrt{15}\widetilde{\Gamma}_{19} + 35\sqrt{3}\widetilde{\Gamma}_{21}) \\ |\widehat{A}_{\perp}^{L}|^{2} + |\widehat{A}_{\perp}^{R}|^{2} &= \frac{1}{36} (5\widetilde{\Gamma}_{1} - 7\sqrt{5}\widetilde{\Gamma}_{3} + 5\sqrt{5}\widetilde{\Gamma}_{6} - 35\widetilde{\Gamma}_{8} + 5\sqrt{15}\widetilde{\Gamma}_{19} - 35\sqrt{3}\widetilde{\Gamma}_{21}) \\ \mathrm{Im}(\widehat{A}_{\perp}^{L}\widehat{A}_{\parallel}^{L} + \widehat{A}_{\perp}^{R}\widehat{A}_{\parallel}^{R*}) &= \frac{5}{36} (\sqrt{15}\widetilde{\Gamma}_{24} - 7\sqrt{3}\widetilde{\Gamma}_{26}) \\ \mathrm{Re}(\widehat{A}_{\perp}^{L}\widehat{A}_{\parallel}^{L*} - \widehat{A}_{\perp}^{R}\widehat{A}_{\parallel}^{R*}) &= \frac{1}{36} (-5\sqrt{3}\widetilde{\Gamma}_{29} + 7\sqrt{15}\widetilde{\Gamma}_{31}) \end{split}$$

Binned LHCb results (arXiv: 1609.04736) imply:

$$\begin{aligned} \tau_{B} \langle |\widehat{A}_{\perp}^{L}|^{2} + |\widehat{A}_{\parallel}^{R}|^{2} \rangle &\equiv \langle M_{\parallel} \rangle = (1.07 \pm 1.13) \times 10^{-8} \\ \tau_{B} \langle |\widehat{A}_{\perp}^{L}|^{2} + |\widehat{A}_{\perp}^{R}|^{2} \rangle &\equiv \langle M_{\perp} \rangle = (0.94 \pm 1.06) \times 10^{-8} \\ \tau_{B} \langle \mathrm{Im}(\widehat{A}_{\perp}^{L}\widehat{A}_{\parallel}^{L*} + \widehat{A}_{\perp}^{R}\widehat{A}_{\parallel}^{R*}) \rangle &\equiv \langle M_{\mathrm{im}} \rangle = (-0.75 \pm 0.79) \times 10^{-8} \\ \tau_{B} \langle \mathrm{Re}(\widehat{A}_{\perp}^{L}\widehat{A}_{\parallel}^{L*} - \widehat{A}_{\perp}^{R}\widehat{A}_{\parallel}^{R*}) \rangle &\equiv \langle M_{\mathrm{re}} \rangle = (0.27 \pm 0.50) \times 10^{-8} \end{aligned}$$

High $K\pi$ -Mass Moments in $B \to K\pi\ell\ell$

Example: $\langle M_{\parallel} \rangle$:



Bounds: From $\langle M_{\parallel} \rangle$: $\alpha \lesssim 11$; From $\langle M_{\perp} \rangle$: $\alpha \lesssim 17$; From $\langle M_{\rm re} \rangle$: $\alpha \lesssim 18$.

Upper bounds on P-wave from differential BR:

$$\frac{d1}{dq^2 dk^2} = \tilde{\Gamma}_1 = |\hat{A}_{\parallel}^L|^2 + |\hat{A}_{\parallel}^R|^2 + |\hat{A}_{\perp}^L|^2 + |\hat{A}_{\perp}^R|^2 + |\hat{A}_{0}^L|^2 + |\hat{A}_{0}^R|^2 + \dots$$

$$\frac{10^8 \cdot \langle \mathcal{B} \rangle_{[0.10, 0.98]}}{10^8 \cdot \langle \mathcal{B} \rangle_{[1.10, 2.50]}} = 1.41 \pm 0.27 \rightarrow \alpha \lesssim 5$$

$$10^8 \cdot \langle \mathcal{B} \rangle_{[1.10, 2.50]} = 1.60 \pm 0.29 \rightarrow \alpha \lesssim 6$$

$$10^8 \cdot \langle \mathcal{B} \rangle_{[2.50, 4.00]} = 1.37 \pm 0.26 \rightarrow \alpha \lesssim 5$$

$$10^8 \cdot \langle \mathcal{B} \rangle_{[4.00, 6.00]} = 1.12 \pm 0.26 \rightarrow \alpha \lesssim 4$$

$$10^8 \cdot \langle \mathcal{B} \rangle_{[6.00, 8.00]} = 0.98 \pm 0.23 \rightarrow \alpha \lesssim 3$$

Bounds are easily improved with some info on S-wave form factors.

Javier Virto

Theory Challenges in exclusive rare B decays

June 8th, 2021

Similar to local form factors:

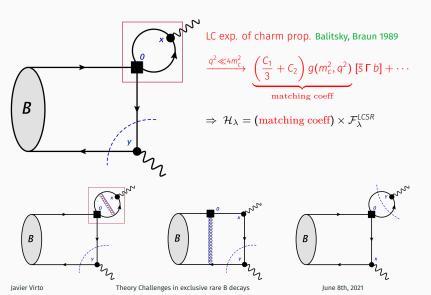
- ▶ Calculation at low- q^2 (LCSRs) and high- q^2 (LQCD)
- ► Interpolation with analytic expansion (*z*-expansion)

We can apply the same approach to Non-Local form factors:

- ▶ Calculate non-local ME at very low q^2
- Access to $q^2 > 0$ via analytic continuation + data

Charm-loop at very low q^2

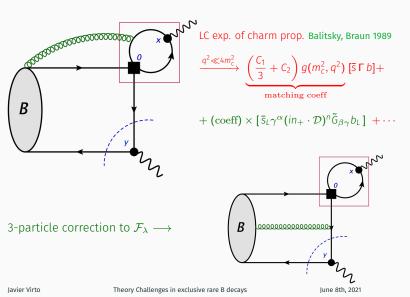
► LCSRs with *B*-meson DAs



Charm-loop at very low q^2

► LCSRs with *B*-meson DAs

Khodjamirian, Mannel, Pivovarov, Wang



Recalculation of charm-loop effect Gubernari, van Dyk, Virto, 2011.09813

Transition	$ ilde{\mathcal{V}}(q^2=1{ m GeV}^2)$	This work	Ref. [11]
$B \to K$	$\mathcal{ ilde{A}}$	$(+4.9\pm2.8)\cdot10^{-7}$	$(-1.3^{+1.0}_{-0.7})\cdot 10^{-4}$
	$\tilde{\mathcal{V}}_1$	$(-4.4\pm3.6)\cdot10^{-7}{\rm GeV}$	$(-1.5^{+1.5}_{-2.5})\cdot 10^{-4}{ m GeV}$
$B \to K^*$	$ ilde{\mathcal{V}}_2$	$(+3.3\pm2.0)\cdot10^{-7}{\rm GeV}$	$(+7.3^{+14}_{-7.9})\cdot 10^{-5}{\rm GeV}$
	$ ilde{\mathcal{V}}_3$	$(+1.1\pm1.0)\cdot10^{-6}{\rm GeV}$	$(+2.4^{+5.6}_{-2.7})\cdot 10^{-4}{ m GeV}$
	$ ilde{\mathcal{V}}_1$	$(-4.4\pm5.6)\cdot10^{-7}{\rm GeV}$	_
$B_s \to \phi$	$ ilde{\mathcal{V}}_2$	$(+4.3\pm3.1)\cdot10^{-7}{\rm GeV}$	_
	$ ilde{\mathcal{V}}_3$	$(+1.7\pm2.0)\cdot10^{-6}{\rm GeV}$	_

- ► We reproduce the result of KMPW'2010
- ▶ We incude complete set of 3-particle LCDAs Braun, Li, Manashov 2017
- ► Cancellations + Parametric lead to a reduction of the effect of two orders of magnitude

Javier Virto

Theory Challenges in exclusive rare B decays

B mesons mix and decay due to $\mathcal{L}_{Weak} + \mathcal{L}_{BSM?}$

For $m_B \ll M_W, M_{BSM}$ we use an EFT : $\mathcal{L}_{EFT} = \mathcal{L}_{QCD+QED} + \sum_i C_i \mathcal{O}_i$

Class	Flavour structure	Number of Ops.	Other flavours	ADM	Example process
Class I	$\overline{s}b \overline{s}b$	5+3	$\overline{d}b\overline{d}b$	$\hat{\gamma}_{\scriptscriptstyle \mathrm{I}}$	$B_q - \overline{B}_q$ mixing
Class II	$\overline{u}b\overline{\ell} u_{\ell'}$	(2+3) imes 9	$\overline{c}b\overline{\ell} u_{\ell'}$	$\hat{\gamma}_{\scriptscriptstyle \mathrm{II}}$	$\overline{B}_d \to \pi^+ \mu^- \overline{\nu}$
Class III	$\overline{s}b\overline{u}c$	10+10	$ \overline{s}b \overline{c}u \\ \overline{d}b \overline{u}c \\ \overline{d}b \overline{c}u $	$\hat{\gamma}_{ ext{ini}}$	$B^- ightarrow \overline{D}{}^0 K^-$
Class IV	$\overline{s}b\overline{s}d$	5+5	$\overline{d}b\overline{d}s$ $\overline{b}s\overline{b}d$	$\hat{\gamma}_{^{\mathrm{IV}}}$	$B^- ightarrow \overline{K}^0 K^-$
Class V	$ \overline{s}b \overline{q}q \\ \overline{s}b F, \overline{s}b G \\ \overline{s}b \overline{\ell}\ell $	57+57	d	$\hat{\gamma}_{ m v}$	$ \begin{array}{c} \overline{B}_d \rightarrow D^+ D^s \\ \overline{B}_d \rightarrow X_s \gamma \\ B^- \rightarrow K^- \mu^+ \mu^- \end{array} $
Class Vb	$\overline{s}b\overline{\ell}\ell',\ell\neq\ell'$	$(5+5) \times 6$	$\overline{d}b\overline{\ell}\ell'$	$\hat{\gamma}_{ ext{Vb}}$	$\overline{B}_s \to \mu^- \tau^+$
Class $V\nu$	$\overline{s}b\overline{ u}_\ell u_{\ell'}$	$(1+1) \times 9$	$\overline{d}b\overline{ u}_\ell u_{\ell'}$	zero	$B^- \to K^- \overline{\nu} \nu$

Aebischer, Fael, Greub, Virto 2017

Relevant part of the $W_{eak} E_{ffective} T_{theory}$ for $b \rightarrow s\ell\ell$ transitions:

$$\mathcal{L}_{W} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{\star} \sum_{i} C_{i}(\mu) \mathcal{O}_{i}(\mu)$$

$$\mathcal{O}_{1} = (\bar{c}\gamma_{\mu}P_{L}b)(\bar{s}\gamma^{\mu}P_{L}c) \qquad \mathcal{O}_{2} = (\bar{c}\gamma_{\mu}P_{L}T^{a}b)(\bar{s}\gamma^{\mu}P_{L}T^{a}c)$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu} \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}$$

$$\mathcal{O}_{9\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \mathcal{O}_{9'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$\mathcal{O}_{10\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \qquad \mathcal{O}_{10'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$

Currently, global determinations of C_9 (and -maybe- C_{10}) seem discrepant with SM predictions, with an important statistical significance.

Javier Virto

$B_{\rm S} ightarrow \mu^+ \mu^-$	$B \rightarrow X_{\rm s} \mu^+ \mu^-$	$B \to K^* \gamma$	$B \rightarrow X_s \gamma$
$B ightarrow { m K} \mu \mu$	$B o K^* \mu \mu$	$B_{\rm S} o \Phi \mu \mu$	$\Lambda_b o \Lambda \mu \mu$
BRs	AOs	Low q ²	Large q ²
R _K	R _{K*}	LFU (μ)	LFUV (μ vs e)
LHCb	Belle/BaBar	ATLAS	CMS

Latest updates: R_{κ}^{LHCb} , R_{κ}^{Belle} (2019), $B \rightarrow K^* \mu \mu$ (LHCb 2020 [Run 1 + 2016]).

Javier Virto

Theory Challenges in exclusive rare B decays

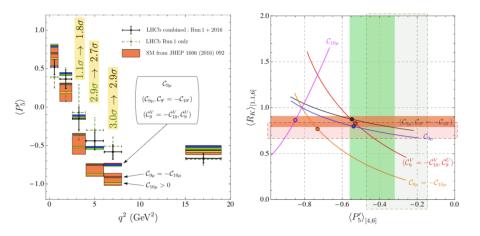
June 8th, 2021

"Anomalies" (as of 2020)

Observable	Experiment	SM prediction	pull
$R_{K}^{[1.1,6]}$	0.85 ± 0.06	1.00 ± 0.01	+2.50
$R_{K^*}^{[0.045,1.1]}$	$0.66\substack{+0.11\\-0.07}$	0.92 ± 0.02	+2.3 <i>o</i>
$R_{K^*}^{[1.1,6]}$	$0.69^{+0.12}_{-0.08}$	1.00 ± 0.01	+2.60
$\langle P'_5 \rangle_{[4,6]}$	-0.44 ± 0.12	-0.82 ± 0.08	-2.7 <i>σ</i>
$\langle P_5' \rangle_{[6,8]}$	-0.58 ± 0.09	-0.94 ± 0.08	-2.9 <i>σ</i>
${\cal B}^{[2,5]}_{\phi\mu\mu}$	0.77 ± 0.14	1.55 ± 0.33	+2.2 <i>σ</i>
$\mathcal{B}^{[5.8]}_{\phi\mu\mu}$	0.96 ± 0.15	1.88 ± 0.89	+2.2 <i>σ</i>

Global fit should accommodate these deviations within all other measurements

A closer look at new measurements of R_k and P'_5 (LHCb 2019, 2020)



More details:

Algeró et al. Addendum to Eur. Phys. J.C 79 (2019)

Javier Virto

Theory Challenges in exclusive rare B decays

June 8th, 2021