

Higgs fiducial and differential measurements at ATLAS and CMS

ROBERTO SEIDITA, UNIVERSITÀ DEGLI STUDI DI FIRENZE E INFN ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS

Motivation and outline

The challenges of differential measurements...

- High statistics required
- Measurement limited to a subset of phase space
- Detectors warp the distribution, need to be accounted for by unfolding
 - Statistically delicate operation, comes with many considerations

...and their strengths

- Sensitive probes for BSM effects and precision benchmarks for the SM
- Directly measure the spectrum of an observable
- No need to specify a signal hypothesis a priori
 - Directly re-interpretable by theorists

Covered in this talk

- $\rightarrow H \rightarrow \tau \tau$
 - > CMS: HIG-20-015
- $\rightarrow H \rightarrow b\overline{b}$
 - > ATLAS: ATLAS-CONF-2021-010
 - > CMS: <u>JHEP12(2020)085</u>
- $\rightarrow H \rightarrow WW$
 - CMS: JHEP03(2021)003
- \rightarrow $H \rightarrow ZZ \rightarrow 4\ell$
 - ATLAS: Eur. Phys. J. C (2020) 942
 - CMS: <u>arXiv:2103.04956</u> (submitted to EPJC)
- $\rightarrow H \rightarrow \gamma \gamma$
 - > ATLAS: <u>ATLAS-CONF-2019-029</u>
 - CMS: JHEP01(2019)183

Measured observables

Wide range of observables giving sensitivity to several effects (including BSM)

- Higgs production-related quantities probe pQCD calculations, radiative corrections, choice of PDF, light quark couplings, CP-structure of the Higgs sector:
 - p_T^H , η_H , N_{jets} , m_{jj} , $|\Delta\eta_{jj}|$, $\Delta\phi_{jj}$
- Jet-related quantities probe radiative QCD quark and gluon emission patterns, QCD resummation effects
 - $p_T^{j_1}, p_T^{j_2}, N_{jets}, m_{jj}$
- Channel specific decay-related observables probe EW corrections and Higgs spin-parity properties
 - $m_{\ell_1\ell_2}$, $m_{\ell_3\ell_4}$, angular variables

Different channels have sensitivity to different variables

HIG-20-015

The H $\rightarrow \tau\tau$ channel

- The analysis measures p_T^H , N_{jets} and $p_T^{j_1}$ distributions
- Relatively large BR ($\sim 6\%$) makes this channel competitive, especially in the high p_T^H , N_{jets} regions
- All decay combinations of the $\tau\tau$ system considered, apart from $ee+4\nu$ and $\mu\mu+4\nu$
- First differential measurement in this channel!

Main backgrounds

- $Z \rightarrow \tau \tau, t\bar{t}$, di-boson production
 - Events with two au leptons estimated with embedded samples
 - Di-muon events in data with muons replaced with simulated τ leptons
- Jets misidentified as τ_h
 - Misidentification probability estimated in data

The fit is done on the mass of the $\tau\tau$ system $(m_{\tau\tau})$, reconstructed with a simplified matrix-element algorithm

- SM expectation
- Fit result

Results

Results unfolded to particle level within likelihood fit

True for all analyses discussed except ALTAS $H \rightarrow \gamma \gamma$ (bin by bin corrections)

$$\mathcal{L} = \prod_{i} Poisson\left(n_{i}; \sum_{j} R_{ij}(\theta) \mu_{j} + b_{i}\right) \cdot \mathcal{C}(\theta) \cdot \mathcal{K}(\mu)$$

Migration matrix

Particle level signal strength

Regularization term (optional), Tikhonov scheme in this analysis

- Prediction from POWHEGv2@NLO reweighted to NNLOPS
- Good agreement with expectation:

•
$$p(p_T^H) = 17\%, p(N_{jets}) = 71\%, p(p_T^{j_1}) = 45\%$$

- Fiducial cross section extracted from fit to N_{jets} :
 - $\sigma^{fid} = 426 \pm 102 \text{ fb} \left(\sigma_{SM}^{fid} = 408 \pm 27 \text{ fb} \right)$

<u>ATLAS-CONF-2021-010</u> - <u>JHEP12(2020)085</u>

The $H \rightarrow b\bar{b}$ channel

- Very high multijet (QCD) background
- BR(H \rightarrow b \bar{b}) = 58% \rightarrow highest in the SM
- Mitigates natural cross section decrease at high p_T^H
- Both analyses target the boosted jet topology, i.e. a large radius jet with a 2 sub-jet structure

- ATLAS: $p_T^{j_1} > 450$ GeV, $p_T^{j_2} > 250$ GeV, one compatible with 2 sub-jets
- CMS: $p_T^{j_1} > 450$ GeV, dedicated MVA tagger

Results

- Different approach for the two analyses (differential results):
 - ATLAS: inclusive in production modes
 - CMS: targets gluon fusion, other modes treated as background

- ATLAS: good agreement with SM
 - Predictions from POWHEG+MINLO (ggH), POWHEG-BOX v2 (VBF, gg → VH, ttH) and POWHEG-BOX v2+MINLO (qq → VH)
- CMS: 2.6σ excess in highest p_T^H bin, reduced to 1.8σ when considering all bins simultaneously
 - Prediction from HJ-MINLO
 - Also compared to NNLO calculation from LHCHXSWG

JHEP03(2021)003

The H → WW channel

- Bosonic channels give good sensitivity on a wide range
- Second highest total branching ratio, highest to a leptonic final state
- Final state with 2 leptons and 2 neutrinos provides best sensitivity
- No access to full kinematics of the diboson system
 - Neutrinos are undetected, resulting in missing transverse energy (MET)
 - The fit is done on the dilepton invariant mass and Higgs transverse mass

Main backgrounds

- Non-resonant WW, $t\bar{t}$ (dominant):
 - Normalization measured in data
- Lepton misidentification, $DY \rightarrow \tau \tau$ (subdominant):
 - DY normalization measured in control region, lepton misidentification probability estimated from data
- Di-boson and tri-boson production (minor):
 - Estimated via MC simulation

Results

- Fiducial and differential (p_T^H, N_{jets}) cross sections
- All production modes are considered
- Nominal prediction form POWHEGv2 at NLO, ggH reweighted to NNLOPS
- Results also compared to MG5@NLO
- Good agreement to SM, highest excess for $N_{iets} \ge 4$ at 1.4σ

- Total fiducial cross section obtained from fit on p_T^H
- Good agreement with SM prediction obtained from POWHEGv2

$$\sigma^{fid} = 86.5 \pm 9.5 \text{ fb}$$

$$\sigma_{SM}^{fid} = 82.5 \pm 4.2 \text{ fb}$$

 $\mu^{fid} = 1.03^{+0.12}_{-0.11}(\pm 0.05(\text{stat.})^{+0.08}_{-0.07}(\text{theo.}) \pm 0.03(\text{lumi.}) \pm 0.07(\text{exp.}))$

$$H \rightarrow ZZ \rightarrow 4\ell$$

EUR. PHYS. J. C (2020) 942 - ARXIV:2103.04956 (SUB. TO EPJC)

The H \rightarrow ZZ \rightarrow 4 ℓ channel

- Relatively low BR compensated by very well reconstructed final state
- Selected events contain 4 leptons (e, μ) , grouped into same-flavor opposite-charge (SFOC) pairs to form Z candidates
- Access to the full kinematics of the Higgs system

Main backgrounds

- Non-resonant $ZZ/Z\gamma$ production (dominant):
 - ATLAS: shape estimated from simulation and normalization measured in m_H sidebands
 - CMS: shape and normalization estimated from simulation
- Z + jets, $t\bar{t}$, WZ (subdominant):
 - Estimated in dedicated control regions
- Triboson, tVV and $t\bar{t}V$ (minor):
 - Taken from simulation

14

Results - fiducial cross sections

Total cross section extrapolated assuming SM acceptance and BRs

- Results compared to different MC predictions
- Good compatibility with the SM expectation

Results - differential cross sections

ATLAS+CMS

 p_T^H , $|y_H|$, N_{jets} , $p_T^{j_1}$

ATLAS

 $m_{12}, m_{34}, |\cos \theta^*| \ \cos \theta_1, \cos \theta_2, \phi, \phi_1 \ N_{b-jets}, p_T^{j_2}, m_{jj} \ |\Delta \eta_{jj}|, \Delta \phi_{jj} \ p_T^{Hj}, m_{4\ell j}, p_T^{Hjj}, m_{Hjj}$

- Statistically dominated uncertainties
- Sensitive in the full range of many variables
- Good SM compatibility

Results - double-differential cross sections

 ATLAS also measured a set of doubledifferential cross sections:

- 2D differential cross sections being made possible with Run II data
- Compared to NNLOPS and MG5@NLO-FxFx reweighted to N³LO
- Jet-related distributions also compared to NNLOJET and RadISH

<u>ATLAS-CONF-2019-029</u> - <u>JHEP01(2019)183</u>

The H $\rightarrow \gamma \gamma$ channel

- Relatively small SM branching ratio (\sim 0.2%) offset by very clean final state
- The full 4-momentum of the diphoton pair is accessible
- Excellent diphoton mass $(m_{\gamma\gamma})$ resolution of 1-2%
- Vertex assignment challenging (no tracker info)
 - Use of ML discriminants (BDT for CMS and NN for ATLAS)
- Main backgrounds: SM diphoton production (dominant), γ + jets, dijet (with misidentified jets)

CMS (36 fb^{-1})

 $egin{aligned} p_{T}^{H}, |y_{H}|, N_{jets}, |\cos{ heta^{*}}|, p_{T}^{j_{1}}, p_{T}^{j_{2}}, \ |y_{j_{1}}|, |y_{j_{2}}|, |\Delta{\phi}_{Hj_{1}}|, |\Delta{y}_{Hj_{2}}|, \ |\Delta{\phi}_{jj}|, |\Delta{\phi}_{H,jj}|, m_{jj}, |\Delta{\eta}_{jj}|, z \end{aligned}$

ATLAS (139 fb^{-1})

 p_T^H , $|y_H|$, N_{jets} , $p_T^{j_1}$, m_{jj} , $\Delta \phi_{jj}$

Combinations with $H \rightarrow ZZ$ and $H \rightarrow bb$, see talk by Haider Abidi

Results

CMS (36 fb^{-1})

$$\sigma^{fid} = 84 \pm 11 \text{(stat.)} \pm 7 \text{(syst.)} \text{ fb}$$

$$\sigma^{fid}_{SM} = 73 \pm 4 \text{ fb}$$

ATLAS (139 fb^{-1})

$$\sigma^{fid} = 65.2 \pm 4.5 \text{(stat.)} \pm 5.6 \text{(syst.)} \text{ fb}$$

$$\sigma^{fid}_{SM} = 63.6 \pm 3.3 \text{ fb}$$

- Good agreement with SM predictions
- ATLAS: default prediction from POWHEG@NNLOPS, compared with NNLOJET and others
- CMS: default prediction from MG5@NLO+FxFx reweighted to NNLOPS, compared to POWHEGv2

Conclusions

- I have presented the most recent fiducial and differential measurements in the Higgs sector from the ATLAS and CMS collaborations
- Wide range of production modes, decay channels and observables first $H \to \tau \tau$ differential result!
- Results are unfolded to particle level, allowing direct comparison with theory
- Most measurements still statistically dominated, looking forward to Run III of the LHC and beyond!
- More Run II results still to come, stay tuned!
- Thank you very much for your attention

Backup

Combination

ATLAS-CONF-2019-032 - Physics Letters B 792 (2019)

CMS (36 fb^{-1})

$$H \rightarrow \gamma \gamma + H \rightarrow ZZ + H \rightarrow b\bar{b}$$

ATLAS (139 fb^{-1})

 $H \to \gamma \gamma + H \to ZZ$

- Measurements must be extrapolated from the fiducial volume to the full phase space
- Done assuming SM acceptances
- Good agreement with predictions

Fiducial volume definitions - $H \rightarrow \tau \tau$

CMS

- $e\tau_h (\mu \tau_h)$:
 - Electron (muon) $p_T > 25(20)$ GeV and $|\eta| < 2.1$
 - Visible $\tau_h p_T > 30$ GeV and $|\eta| < 2.3$
 - $m(e/\mu, \vec{p}_T^{miss}) < 50 \text{ GeV}$
- \bullet $\tau_h \tau_h$:
 - Visible $\tau_h \ p_T > 40 \ \text{GeV}$ and $|\eta| < 2.1$
 - At least one jet with $p_T > 30 \text{ GeV}$
- *e*μ:
 - Leading (subleading) lepton $p_T > 24(15)$ GeV
 - Lepton $|\eta| < 2.4$
 - $m_T(e\mu, \vec{p}_T^{miss}) < 60 \text{ GeV}$

Momenta of photons radiated within $\Delta R=0.1$ of a lepton are added to the lepton's momentum

Migration matrices - $H \rightarrow bb$

Fiducial volume definitions - H → WW

CMS

Observable	Condition
Lepton origin	Direct decay of $H \to W^+W^-$
Lepton flavors; lepton charge	e μ (not from τ decay); opposite
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{l_1} > 25\mathrm{GeV}$
Trailing lepton $p_{\rm T}$	$p_{\mathrm{T}}^{l_2} > 13\mathrm{GeV}$
$ \eta $ of leptons	$ \eta < 2.5$
Dilepton mass	$m^{ll} > 12 \mathrm{GeV}$
p_{T} of the dilepton system	$p_{\mathrm{T}}^{ll} > 30\mathrm{GeV}$
Transverse mass using trailing lepton	$m_{\mathrm{T}}^{l_2} > 30\mathrm{GeV}$
Higgs boson transverse mass	$m_{\mathrm{T}}^{\mathrm{H}} > 60\mathrm{GeV}$

Momenta of photons radiated within $\Delta R=0.1$ of a lepton are added to the lepton's momentum

Correlation matrices - H → WW

Correlations among the unfolded signal strength modifiers

Fiducial volume definitions - $H \rightarrow ZZ$

ATLAS

Leptons and jets	
Leptons	$p_{\rm T} > 5 { m ~GeV}, \eta < 2.7$
Jets	$p_{\rm T} > 30 \text{ GeV}, y < 4.4$
Lepton selection and pairing	
Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm GeV}$
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $
Subleading pair (m_{34})	Remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $
Event selection (at most one quadruplet per event)	
Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV} \text{ and } 12 \text{ GeV} < m_{34} < 115 \text{ GeV}$
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$
Lepton/Jet separation	$\Delta R(\ell_i, \text{jet}) > 0.1$
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$
Wass willdow	

CMS

Lepton kinematics and isolation					
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$				
Next-to-leading lepton p_T	$p_{\mathrm{T}} > 10\mathrm{GeV}$				
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$				
Pseudorapidity of electrons (muons)	$ \eta < 2.5$ (2.4)				
Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\mathrm{T}}$				
Event topology					
Existence of at least two same-flavor OS lepton pairs, where lepton	s satisfy criteria above				
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$				
Inv. mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$				
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$				
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell^{\prime-}} > 4\mathrm{GeV}$				
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{ m GeV}$				

Correlation matrices - $H \rightarrow ZZ$

Fiducial volume definitions - $H \rightarrow \gamma \gamma$

ATLAS

Objects	Fiducial definition
Photons	$ \eta < 2.37$ (excluding 1.37 < $ \eta < 1.52$), $\sum p_{\rm T}^i/p_{\rm T}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{ GeV}$, $ y < 4.4$
Diphoton	$N_{\gamma} \ge 2$, $105 \text{GeV} < m_{\gamma\gamma} < 160 \text{GeV}$, $p_{\text{T}}^{\gamma_1}/m_{\gamma\gamma} > 0.35$, $p_{\text{T}}^{\gamma_2}/m_{\gamma\gamma} > 0.25$

The sum on p_T^i is extended to all charged particles within $\Delta R = 0.2$ of the photon

CMS

Phase space region	Observable	Bin boundaries								
	$p_{\mathrm{T}}^{\gamma\gamma}~(\mathrm{GeV})$	0	15	30	45	80	120	200	350	∞
Baseline $\begin{split} p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} &> 1/3 \\ p_{\rm T}^{\gamma_2}/m_{\gamma\gamma} &> 1/4 \\ \eta^{\gamma} &< 2.5 \\ {\rm Iso}_{\rm gen}^{\gamma} &< 10{\rm GeV} \end{split}$	$N_{ m jet}$	0	1	2	3	4	∞			
	$ y^{\gamma\gamma} $	0	0.15	0.3	0.6	0.9	2.5			
	$ \cos(\theta^*) $	0	0.1	0.25	0.35	0.55	1			
	$p_{\mathrm{T}}^{\gamma\gamma}$ (GeV), $N_{\mathrm{jet}}=0$	0	20	60	∞					
	$p_{\mathrm{T}}^{\gamma\gamma}$ (GeV), $N_{\mathrm{jet}}=1$	0	60	120	∞					
	$p_{\mathrm{T}}^{\gamma\gamma}$ (GeV), $N_{\mathrm{jet}} > 1$	0	150	300	∞					
	$N_{ m jet}^{ m b}$	0	1	2	∞					
	$N_{ m lepton}$	0	1	2	∞					
	$p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	0	100	200	∞					
1-jet	$p_{\mathrm{T}}^{j_1}$ (GeV)	0	45	70	110	200	∞			
Baseline $+ \ge 1$ jet	$ y^{j_1} $	0	0.5	1.2	2	2.5				
$p_{\mathrm{T}}^{j} > 30 \mathrm{GeV}, \eta^{j} < 2.5$	$ \Delta\phi^{\gamma\gamma,j_1} $	0	2.6	2.9	3.03	π				
	$ \Delta y^{\gamma\gamma,j_1} $	0	0.6	1.2	1.9	∞				
	$p_{\mathrm{T}}^{j_{2}}~(\mathrm{GeV})$	0	45	90	∞					
2-jets	$ y^{j_2} $	0	1.2	2.5	4.7					
Baseline $+ \ge 2$ jets	$ \Delta\phi^{j_1,j_2} $	0	0.9	1.8	π					
$p_{\mathrm{T}}^{j} > 30 \mathrm{GeV}, \eta^{j} < 4.7$	$ \Delta\phi^{\gamma\gamma,j_1j_2} $	0	2.9	3.05	π					
	$ \overline{\eta}_{j_1j_2} - \eta_{\gamma\gamma} $	0	0.5	1.2	∞					
	$m^{j_1j_2}$ (GeV)	0	100	150	450	1000	∞			
	$ \Delta \eta^{j_1,j_2} $	0	1.6	4.3	∞					
VBF-enriched	$p_{\mathrm{T}}^{j_{2}}\;(\mathrm{GeV})$	0	45	90	∞					
2-jets + $ \Delta \eta^{j_1,j_2} > 3.5, m^{j_1j_2} > 200 \text{GeV}$	$ \Delta\phi^{j_1,j_2} $	0	0.9	1.8	π					
	$ \Delta\phi^{\gamma\gamma,j_1j_2} $	0	2.9	3.05	π					