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® Measure fiducial & differential Higgs cross sections at the LHC
» Most model-independent way we have to search for BSM in the Higgs sector

® Total fiducial cross section measures deviations from SM gluon-fusion rate
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e pH spectrum is the most important differential quantity

® High p¥ ~ /3 >> my increases sensitivity to new operators
[...for SM precision theory, see next talk by R. Rontsch]

® Focus of this talk: p5 < muy ~ V3 < 2m, (or p¥ integrated over)

»> Measure or put bounds on anomalous b, ¢, and light quark Yukawa couplings
[Bishara, Haisch, Monni, Re '16; Soreq, Zhu, Zupan "16; see e.g. ATLAS-CONF-2019-029]
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® Uncertainty Ao on SM prediction translates into discovery reach:

Ao v? o
o YAz, © Assmo~vyRo
o BSM o

Challenges for theory

® QCD corrections to gg — H are large: o /oLo = 3

> Calculation of inclusive cross section has been pushed to N®LO
[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger '15-'18]

® But LHC experiments apply kinematic selection cuts on Higgs decay products

> Need complete interplay of QCD corrections and O(1) fiducial acceptance
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Fiducial predictions for gg — H — ~~ at three loops

Consider gg — H — ~~ with ATLAS fiducial cuts:

' >0.35mu, p}?>025mu, |n7| <237, |n7|¢[1.37,1.52]

Focus of this talk [Billis, Dehnadi, Ebert, JM, Tackmann, 2102.08039]
e Compute fiducial spectrum for g = p5 = p)" at N®LL’+N®LO

e Compute total fiducial cross section at N®LO, and improved by resummation
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Fiducial predictions for gg — H — ~~ at three loops

Consider gg — H — ~~ with ATLAS fiducial cuts:
pit > 0.35my, pr>025mu, |07 <237, |n7|¢][1.37,1.52]

Focus of this talk [Billis, Dehnadi, Ebert, JM, Tackmann, 2102.08039]

e Compute fiducial spectrum for g = p5 = p)" at N®LL’+N®LO
e Compute total fiducial cross section at N®LO, and improved by resummation

® Previous state of the art was N3LL(+NNLO;) and NNLO, respectively
[Chen et al. "18; Bizon et al. '18; Gutierrez-Reyes et al. "19; Becher, Neumann "20]

Kicked off a recent push for fiducial color singlet at complete three-loop accuracy:

® Complementary N®LO results for fiducial Y,, 71, A~ (with different method)
[Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607; see plenary talk by B. Mistlberger later today]

e Fiducial N3LL’ results for Higgs (and Drell-Yan) gr spectrum
[Re, Rottoli, Torrielli, 2104.07509; see also Camarda, Cieri, Ferrera, 2103.04974]
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Fiducial predictions for gg — H — ~~ at three loops
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Kicked off a recent push for fiducial color singlet at complete three-loop accuracy:

e Complementary N®LO results for fiducial Y.+, 741, An.~ (with different method)
[Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607; see plenary talk by B. Mistlberger later today]

e Fiducial N3LL’ results for Higgs (and Drell-Yan) gr spectrum
[Re, Rottoli, Torrielli, 2104.07509; see also Camarda, Cieri, Ferrera, 2103.04974]
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Fiducial predictions for gg — H — ~~ at three loops

Consider gg 858 NLL+NNLO (X K,ger), w/ recoil
) 2.0 & N3LL'4+NNLO (X K,ger), W/ recoil ]
p} Z C 4 ATLAS preliminary data 37, 1.52]
g 1.5 F PDF4LHC15 (NNLO) i
Focus of th > 13 TeY, pp = H(= y7) + X ann, 2102.08039]
= ATLAS fiducial
[} Compute ;&‘1'0 B uncertjainties with pg, pup, Q variations |
=
~ .
® Compute % 1 mmation
0.5 @8
® Previous 0.0 1 i 1

[Chen et al. 0 10 20 30 50 100 200 400
p]7 [GeV] [2104.07509]

Kicked off a recent push for fiducial color singlet at complete three-loop accuracy:

e Complementary N®LO results for fiducial Y.+, 741, An.~ (with different method)
[Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607; see plenary talk by B. Mistlberger later today]

e Fiducial N3LL’ results for Higgs (and Drell-Yan) gr spectrum
[Re, Rottoli, Torrielli, 2104.07509; see also Camarda, Cieri, Ferrera, 2103.04974]
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gr subtractions

. do
Compute cross section from o = /qu —— and power expand around IR, gr — O:

dgr
do do©® doe® do®
dgr dgr T dgr * dqr

2

~xom oz ro( )« -]

(0) m
o =aw0d(an) + Yol {a¥b(ar) + Yol [ ar/ma)]

dqr qgr

® Contains LO contribution, virtual corrections, and log-enhanced singular terms

Predicted by factorization = gr subtractions [catani, Grazzini '07]

do®
T = S0l Sl ar /)

qu

Still logarithmically divergent, only present if decay products are resolved

® Also predicted by factorization [Ebert, M, Stewart, Tackmann "20]
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gr subtractions

. do
Compute cross section from o = /qu —— and power expand around IR, gr — O:

dgr
do do©® doe® do®
dgr dgr T dgr * dqr

~xom oz ro( )« -]

do® n (2 4r
= Yr Yo,

n m
® Finite as gr — 0, extract from H -+ 15 calculation

Set up some notation, use that production and decay (acceptance) factorize:

dUincl

a4 = /dY A(qTaY 9) W(QT’Y)v Alncl = 1 W(qTaY) = qu dy

qu
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Leading-power factorization & resummation to N3LL’

At leading power in gr << m g, the hadronic dynamics factorize as:
WO (qr,Y) = H(m%, 1) /dZEa d*ky d%ks 8(gr — |Ka + kb + ks|)

X ng(ma”;u,/% v) Bg v (v, Eb’ wyv) S(E37 Ky v)

soft

collinear — collinear

7 N

soft )

. . d
» Predicts singular structure of d—a asqgr — 0
qr

> Enables all-order resummation = Sudakov peak
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Leading-power factorization & resummation to N3LL’

At leading power in gr << m g, the hadronic dynamics factorize as:

WO (qr,Y) = H(m%, 1) /dzic’a d*ky d%ks 8(gr — |Ka + kb + ks|)

X ng(ma’ Ea’ 1 V) Bg o (T, Eb’ wyv) S(ES, Ky v)

To reach N3LL for W(®, implemented in SCET1ib:

Three-loop soft and hard function ...includes in particular the three-loop virtual form factor
[Li, Zhu, '16] [Baikov et al. '09; Lee et al. 10; Gehrmann et al. 10]

Three-loop unpolarized and two-loop polarized beam functions
[Ebert, Mistlberger, Vita '20; Luo, Yang, Zhu, Zhu '20]

[Luo, Yang, Zhu, Zhu "19; Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov '19]
Four-loop cusp, three-loop noncusp anomalous dimensions

[Briiser, Grozin, Henn, Stahlhofen "19; Henn, Korchemsky, Mistlberger '20; v. Manteuffel, Panzer,
Schabinger "20] [Li, Zhu, '16; Moch, Vermaseren, Vogt '05; Idilbi, Ma, Yuan '06; Vladimirov '16]

N>LL solutions to virtuality/rapidity RGEs in br space

Hybrid profile scales for fixed-order matching
[Lustermans, JM, Tackmann, Waalewijn "19]
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Fiducial power corrections (in this case)

... are the power corrections coming from the gr-dependent acceptance:

dofPe

qu

= /‘dY [A(qT, Y;0) — A©(v; @)} w(qr,Y)

® Uniquely predict all linear power corrections do*) because

W(ar,Y) = W (qr, Y)[1 + O(Tﬁ,ﬂ

Alar,Y;0) = AP (Y;0) |1+ ‘°<%>]

e Resummed to the same N3LL’ accuracy as leading-power terms
by resumming W (®) and keeping exact A(qr,Y; ®)

[Presence of linear terms pointed out in Ebert, Tackmann '20]
[Factorization demonstrated in Ebert, M, Stewart, Tackmann '20]
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Resummation effects in the total cross section

Key point

Fiducial power corrections induce resummation effects in the total cross section

fpc
Compare fixed-order series, isolating the effect of /qu do ™,

qu ’
ool = 13.80 [1 + 1.291 + 0.783 + 0.299] pb
ohd = 6.928[1 + 1.429 4+ 0.723 +0.481] pb

= 6.928 [1 + (1.30040.129¢p.) + (0.784—0.061¢c) + (0.33140.150¢,c)] pb

> Fiducial power corrections show no convergence, remainder is similar to inclusive
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Resummation effects in the total cross section

Key point

Fiducial power corrections induce resummation effects in the total cross section

Two ways to understand this:
1. Acceptance acts as a weight under the gr integral

E H—~vy — Ei 99— H (13TeV)
0.80F 3 2z 040 vEFT, mH = 125 GeV 1
— E 1 |©) £ Y=0 ]
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S o0.70f 3 >~ : NLO E
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E ATLAS cuts ] = 0.0 ]
0.60 e b b b —0.1 P b b
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Cinel = /qu W(gr) oga = /qu A(qr) W(ar)
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Resummation effects in the total cross section

Key point

Fiducial power corrections induce resummation effects in the total cross section

Two ways to understand this:

1. Acceptance acts as a weight under the gr integral

2. We're cutting on the resummation-sensitive photon pr

(1/B,,) do/(dY dp}') [pb/GeV
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Differential g7 subtractions

off
qar sing nons
o / dgr da / dq / dO'FO1
0

Include do™P¢ in differential subtraction:

do_sing

do©® dofre
= [dYy A(qr,Y;0) W Y) =
dgr / (ar, Y3 ©) (g7, Y) dqgr dgr
Remaining (nonsingular) terms:
o (2) doro, dopo®
= [adY A(qr,Y;©) |W, YY) 4| = |99F0 _ 990
dqr / (qT’ ’ )[ FO(qT )+ } {qu dgr qT >0
Challenges:

® Obtaining stable H + 17 results for gr — 0 is hard

...in particular at NNLO4
® Dropping the nonsingular below gr < ¢** is not viable, either

...as we'll see shortly
® (Crucial to use differential subtraction, not slicing
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Differential g subtractions
qg—ff slng nons
oz/ dgr d" +/ dq +/ d"Fol
o

Include do™P¢ in differential subtraction:
do_sing

qu

do©® dofPe
= [dy A Y; © Y) =
/ (QT, 9 @) w (QT, ) qu + qu

Remaining (nonsingular) terms:

nons

OFrO (2) dO'Fol do ?83
= [dY A Y;0) | W Y)+---| = | —
dgr / (ar,¥3©) [ ro (a1, Y) } { dgr dgr |, <o
Key idea

Fit nonsingular data to known form at subleading power and integrate analytically:

do_nons 2n—1

2
QT ( k_dT

qr = ar + bki + ¢k TP e ) In
dgr |,. m% k:z() 2 m%

® |nclude higher-power by, ci, to get unbiased ax

> Allows us to use more precise data at higher g as lever arm in the fit !
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Fit results at N3LO

5prr T — 0.05 Fryr T T T T g
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= E (18 TeV) { NNLO; data El 8 UE (13 TeV) I NNLO, data J
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Setup:

® Combined fit to existing binned inclusive and fiducial NNLO; data from NNLOjet

[Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '15-16; as used in Chen et al. '18; Bizoh et al. '18]
e Empirically find 0.4 < a}?/ai™' < 0.55 at (N)NLO = use as weak 1o constraint

o Add oinei (g1 < g5%) = ohatl© — oina(gr > ¢5*) as additional incl. data point
[Mistlberger "18]
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Comparison to other methods: gz slicing

100 g g
E 99— H —~v (13 TeV) 7

1071
Sz E Z
b £ i
= 107%¢ E
& E 3
o E 4
> -3 a
3 1077
o E Ei
5 E b
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10 Ege ‘\o‘\f’/ " tEFT,mpy = 125GeV 3
F s, ATLAS cuts ]
10-5 @il el il il

1072 10! 10° 10!

a3 [GeV]
Slicing approach to g subtractions:

[used e.g. in Cieri, Chen, Gehrmann, Glover, Huss, 1807.11501; Camarda, Cieri, Ferrera, 2103.04974]

d
o = 0.(0) (q%ut) + o_pr(q%ut) + ghons (q%“t) + tqu ;1‘221

e Slicing uses finite ¢5** ~ 2 GeV and neglects both o™ (¢5""), o™ (¢5*) =~ 0
e This is a catastrophic approximation even at o2, and definitely at a®

e Even without ¢ (incl. cross section), this is a bad approximation at a®
® ¢5v% variations only scan local maximum around 2GeV ... 18/25



Comparison to other methods: Projection to Born

10°

g9 — H —~v (13 TeV)
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Projection-to-Born method:
[used e.g. in Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607]

do o da'incl
ay — 40Y) 5y

+ [ dar[AG@r,Y) = A©,Y)] W(ar,Y)
Zq%“

® First term from analytic (threshold expansion of) inclusive rapidity spectrum

e Second term numerically from H + 15 MC, dominated by &' at small gr

> Need to integrate down to ¢3"* < 0.1GeV!

19/25



Results and future directions



The fiducial g spectrum at N3LL’+N3LO
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® Total uncertainty is Aot = Agr D Ay D Amatch D Aro @ Anons
[See also Ebert, JM, Stewart, Tackmann, 200611382 for details]

® Observe excellent perturbative convergence & uncertainty coverage
® Crucial to consider every variation to probe all parts of the prediction
® Divide H — ~~ branching ratio 1B, out of data [LHC Higgs Cross Section WG, 1610.07922]

® Data are corrected for other production channels, photon isolation efficiency
[ATLAS, 1802.04146]
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The total fiducial cross section at N3LO and N3LL’+N3LO

30r ]

28 [ ATLAS Preliminary (139 fb™") _

—_ 26; I L5 e {Jﬁ
2 26¢ A AW
= C 1 N3LQ l N3LL'4+N3L 1
z 24: N3LL+NNLO ]
Q 22r 3
z C NNLO Avesum | NNLL+NLO ]
b 20 C ;
Faro Avresum @ Aro ]

181~ NLO gg— H —~~v (13 TeV)
16: rEFT, my = 125 GeV

® Large N3LO correction to fiducial cross section (worse than inclusive)
® Caused by fiducial power corrections, not captured by rescaling inclusive N3LO result

® Resummation restores convergence

> Allows for the first direct comparison to experimentally measured
total Higgs cross section at genuine three-loop order
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Outlook: Resummation effects in other H — ~~ observables

e “Infrared sensitivity” observed also in other Higgs observables at N®LO
[Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607]

< Precisely the fiducial power corrections we can analytically deal with and resum
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Note: Plots on the right show only o ¢,
Y| 22/25



Outlook: Resummation effects in other H — ~~ observables

e “Infrared sensitivity” observed also in other Higgs observables at N®LO
[Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607]

< Precisely the fiducial power corrections we can analytically deal with and resum
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Outlook: Resummation effects in other H — ~~ observables

e “Infrared sensitivity” observed also in other Higgs observables at N®LO
[Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607]

< Precisely the fiducial power corrections we can analytically deal with and resum
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Summary & Outlook

30
e Presented N3LL’+N3LO and N2LO predictions ~ 28[ % P oo {,N;
for fiducial p7’ spectrum and total fiducial ~ z 26¢ i peT—— N.XLL,_S‘L}f/f:
cross section for gg —+ H — v~ atthe LHC - 24F N'LLANNLO 1
% 22? ‘ NNLO Aresum | NNLL+NLO E
> First direct comparison to LHC data ° 202; Aram@hro 3
at this order and level of precision 18F l o 0 1) (18TWV)

16"

e Resummed large fiducial power corrections induced by experimental acceptance
> Even total fiducial cross sections are sensitive to gr resummation effects

> Enables best-possible combined predictions for other  — ~~ observables

® Nonsingular extraction and matching to total cross section made possible
by combining all information from N®LO oin.1, fixed-order NNLOjet data,
fiducial power corrections, and known functional form at subleading power

e N2LL’ fiducial power corrections to be part of upcoming public SCET1ib release
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Summary & Outlook

30
e Presented N3LL’+N3LO and N2LO predictions ~ 28[ % P oo {,MZ
for fiducial p4 spectrum and total fiducial ~ = 26| | e
cross section for gg — H — ~~ atthe LHC . 24F NLLINNLO
% 22F ‘ NNLO  a...| NNLL+NLO E
> First direct comparison to LHC data ° 2021 Aram@hro 3
at this order and level of precision 18F l o 99— H 77 (13TeV)
rEFT, my = 125 GeV ]

16"

e Resummed large fiducial power corrections induced by experimental acceptance
> Even total fiducial cross sections are sensitive to gr resummation effects

> Enables best-possible combined predictions for other  — ~~ observables

® Nonsingular extraction and matching to total cross section made possible
by combining all information from N®LO oin.1, fixed-order NNLOjet data,
fiducial power corrections, and known functional form at subleading power

e N2LL’ fiducial power corrections to be part of upcoming public SCET1ib release

Thank you for your attention!
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Uncertainty breakdown
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N3LO:  ofa/Byy = (25.16 £ 1.78r0 % 0.12,0ns) Pb

N2LL'+N3LO:  ona/Byy = (25.41 4 0.59r0 + 0.21,,. + 0.17,
+ 0.06match & 0.20h0ns) Pb

A, 36independent scale variations in W (%) factorization
A, Vary phase of hard scale over arg pgr € {w/4,3n/4}
Amaten  Vary transition points governing resummation turn-off
Aro Vary ur/mp € {1/2,2} (dominates over p - due to overall a2)
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Leading-power factorization & resummation to N3LL’

At leading power in gr << m g, the hadronic dynamics factorize as:
W (gr, ¥) = H(mbr ) [a*Fo a2y d*F. 6(ar — [o + B + )
X B (xa, Ea, iy V) Bg uw (o, Kby poy ) S(Eay g1, 1)
Ingredients satisfy 2D renormalization group equations, e.g. soft function:

d . - - 3 d . - - :
.u@ lns(bTeﬁL'/V) :7g(uay) V@ lnb(th/-Lvy) :"/g(bTa“)

. 0.5 LEARRRRRE AR AR RN LR RN =
® Solve recursively at fixed order _ Fl B gg—)H (13 TeV) |
> 04 _ ]
» Complete log structure of do(® 8 ! :,\\ TERTmi = 12 Gev ]
. 2 030 —
e Closed-form all-order solution A TN - E;LLLJNNLO
< bl oV A
» Resummed Sudakov peak > ot
= . . m|
. . S 1 ]
® Resummation order specified E oo Tmm— -
by perturbative order of anom. dims. o L L e L 1
and boundary conditions -0 20 40 60 80 100



Fit results at (N)NLO
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Fixed-order inputs:
® NLO contribution to W (qr,Y) at gr > 0 is easy

® At NNLO, renormalize & implement bare analytic results for W (gr,Y")
[Dulat, Lionetti, Mistlberger, Pelloni, Specchia '17]
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Fit results at (N)NLO
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Fit procedure:
e Perform separate x fits of {a}**""“} to inclusive and fiducial nonsingular data

[generated by our analytic implementation]

® |ncrease fit window to larger g until p value decreases

Include subleading log coefficients at next higher power until p value decreases

® Also test intermediate combination to ensure fit is stable
[procedure follows Moult, Rothen, Stewart, Tackmann, Zhu "15-"16]
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Fit results at (N)NLO
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Fit procedure:
incl,fid

e perform separate x” fits of {a,’ } to inclusive and fiducial nonsingular data
[generated by our analytic implementation]

® |ncrease fit window to larger g until p value decreases
® Include subleading log coefficients at next higher power until p value decreases

® Also test intermediate combination to ensure fit is stable
[procedure follows Moult, Rothen, Stewart, Tackmann, Zhu "15-"16]
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Fit results at (N)NLO
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Fit procedure:
incl,fid

Perform separate x fits of {a,’

[generated by our analytic implementation]

Increase fit window to larger gr until p value decreases

10!

} to inclusive and fiducial nonsingular data

Include subleading log coefficients at next higher power until p value decreases

Also test intermediate combination to ensure fit is stable
[procedure follows Moult, Rothen, Stewart, Tackmann, Zhu "15-"16]
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Fit results at (N)NLO
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Fit procedure:
incl,fid

e perform separate x” fits of {a,’ } to inclusive and fiducial nonsingular data

[generated by our analytic implementation]

® |ncrease fit window to larger g until p value decreases

Include subleading log coefficients at next higher power until p value decreases

® Also test intermediate combination to ensure fit is stable
[procedure follows Moult, Rothen, Stewart, Tackmann, Zhu "15-"16]
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Fit results at (N)NLO

T T T T T T T

1.09 —

I
= [ gg—H—~y (13TeV) A = lol?gg—>H—)~/'7 (13 TeV) -3
& 0'8; NNLO, inclusive ] ) f NNLO, inclusive 1
S 0.6; ——Fit result é & 10°c = Fit result =
& [ ! NLO;data SR E 1 NLO, data e
S 0.4 (not included) = S L (not included) a
o F 1 g 107 4
~ £ ] ~ £ 3
£ 0.2 3 z ]
2 r ] g 10-2 i
< 0.0F 1 0%
El Ll T Lol Ll L
1071 10° 10! 107! 10° 10! 102
qr [GeV] qr [GeV]
e Check the purely hadronic al? by directly fitting them to
q2 2n—1 q q2
0 0 k
qT/dYA()(Y;G)[W—W( =T N (ot T )t I
MH o miy ™My

e Recover analytic (N)NLO coefficient of oinc at 1077 (107%) v

® Analytic implementation gives us awesome precision on all NLP coefficients
(all logs at NLO and NNLO, also differential in Y, broken down by color structure, ...)

» Can serve as benchmark for gr resummation at subleading power
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