Higgs Production at High Transverse Momentum

Raoul Röntsch

LHCP2021
10 June 2021
GLUON FUSION
Motivation

- Study Higgs production at high $p_T \gtrsim 340$ GeV → Explore Higgs in a new kinematic regime.

- Allow us to look inside loop:
 - Probe Higgs couplings to SM quarks;
 - Probe of potential New Physics in loop.

- Studies by ATLAS and CMS.
 [ATL-CONF-2021-010; JHEP 2012 085]
 [Talk by Christina Reissel]

 - Limited by available statistics → looking forward to more data!
Theoretical Calculations

- Calculations of gluon fusion Higgs production use Heavy Effective Field Theory: integrate out top loops.

 ✔ $H \@ N3LO$ [Anastasiou et al., ‘16; Mistlberger, ‘18]

- High-p_T: top mass no longer largest scale:
 - HEFT not valid.
 - Full (top) mass effects need to be taken into account.
Current Status

• LO results for $H+j$, $H+jj$, $H+3j$ known.

• NLO corrections to $H+j$ require two-loop massive amplitudes:

 ![Diagram](https://via.placeholder.com/150)

 Extremely challenging!

• Approximate treatments (reweighting, jet merging, ...):

 [Buschmann et al., ’14; Maltoni, Vryonidou, Zaro, ’14; Hamilton, Nason, Zanderighi, ’15; Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier, ’16; Frederix, Frixione, Vryonidou, Wiesemann, ’16; Neumann, Williams, ’17; Neumann, ’18]

• Progress towards exact analytic amplitudes.

 [Bonciani et al., ’16; Frellesvig, Hidding, Maestri, Moriello, Salvatorı, ’20]

• Analytic results using $p_T,H \gg m_t,m_H$

 [Kudashkin, Melnikov, Wever, ’17 + Lindert, ’18]

• Exact numerical results.

 [Jones, Kerner, Luisoni, ’18]
$H+j$: Results at NLO

Exact results

[Jones, Kerner, Luisoni, ‘18]

Approximation $p_{T,H} \gg m_t, m_H$

[Kudashkin, Lindert, Melnikov, Wever, ‘18]

1. K-factors from exact and approximate results show similar behavior → important validation!
$H+j$: Results at NLO

Exact results

[Jones, Kerner, Luisoni, '18]

Approximation $p_{T,H} \gg m_t, m_H$

[Kudashkin, Lindert, Melnikov, Wever, '18]

2. K-factors **slightly larger** than k-factors using HEFT, but **quite flat** in both cases!
H+j: Results at NLO

Exact results

[Jones, Kerner, Luisoni, ‘18]

Approximation $p_T,H \gg m_t, m_H$

[Kudashkin, Lindert, Melnikov, Wever, ‘18]

3. Corrections are large ($k \approx 2$) and scale uncertainty large ($\sim 20\%$)
H+j: Beyond NLO

- Increased precision and reduced theoretical uncertainty: combine HEFT NNLO results with exact NLO results.

- **Flat k-factors**: NLO and NNLO corrections in HEFT and exact NLO corrections don’t alter shape of distribution.

- “Born-improved”: Mass effects at NNLO accounted for by reweighting HEFT results using exact results.

 [Chen, Gehrmann, Glover, Jaquier ‘15]

\[
\Sigma(p_T, \text{cut}) = \int_{p_T^{\text{cut}}}^{\infty} \frac{d\sigma}{dp_T'} dp_T'
\]

\[
\Sigma_{\text{HEFT imp.}(0), \text{NNLO}}(p_T^{\text{cut}}) = \frac{\Sigma_{\text{exact, LO}}(p_T^{\text{cut}})}{\Sigma_{\text{HEFT, LO}}(p_T^{\text{cut}})} \Sigma_{\text{HEFT, NNLO}}(p_T^{\text{cut}})
\]

(Mass effects at LO)

(NNLO corrections in HEFT)

[Becker et al., LHCHXSWG note, ‘20]
Use exact results at NLO

\[\sum_{\text{HEFT imp.}(1), \text{NNLO}} (p_T^{\text{cut}}) = \frac{\sum_{\text{exact, NLO}} (p_T^{\text{cut}})}{\sum_{\text{HEFT, NLO}} (p_T^{\text{cut}})} \sum_{\text{HEFT, NNLO}} (p_T^{\text{cut}}) \]

[Becker et al., LHCHXSWG note, ’20]
H+j: Beyond NLO

- Use exact results at NLO

\[\sum_{\text{HEFT imp.}(1), \text{NNLO}} (p_T^{\text{cut}}) = \frac{\sum_{\text{exact, NLO}} (p_T^{\text{cut}})}{\sum_{\text{HEFT, NLO}} (p_T^{\text{cut}})} \sum_{\text{HEFT, NNLO}} (p_T^{\text{cut}}) \]

[Becker et al., LHCHXSWG note, ’20]

\[p_T^{\text{cut}} = 450 \text{ GeV} : \]

\[\sum_{\text{exact, LO}} = 6.5^{+45\%}_{-29\%} \text{ fb} \quad \sum_{\text{exact, NLO}} = 14.4^{+15\%}_{-21\%} \text{ fb} \]

\[\sum_{\text{HEFT, NNLO}} = 51^{+9\%}_{-11\%} \text{ fb} \quad \text{Unphysical number} \]

\[\sum_{\text{EFT imp.}(1), \text{NNLO}} = 18.1^{+11\%}_{-13\%} \text{ fb} \]
\[\sum_{\text{HEFT imp.(1)}, \text{NNLO}} (p_T^{\text{cut}}) = \frac{\sum_{\text{HEFT, NLO}} (p_T^{\text{cut}})}{\sum_{\text{HEFT, NLO}} (p_T^{\text{cut}})} \sum_{\text{HEFT, NNLO}} (p_T^{\text{cut}}) \]

- Use exact results at NLO

\[p_T^{\text{cut}} = 450 \text{ GeV} \]

\[\sum_{\text{exact, LO}} = 6.5^{+45\%}_{-29\%} \text{ fb} \quad \sum_{\text{exact, NLO}} = 14.4^{+15\%}_{-21\%} \text{ fb} \]

\[\sum_{\text{HEFT, NNLO}} = 51^{+9\%}_{-11\%} \text{ fb} \]

Reduced theoretical uncertainty

\[\sum_{\text{EFT imp.(1), NNLO}} = 18.1^{+11\%}_{-13\%} \text{ fb} \]
Generators

<table>
<thead>
<tr>
<th>Fixed order level</th>
<th>Total</th>
<th>$p_T^{cut} > 400$ GeV</th>
<th>$p_T^{cut} > 450$ GeV</th>
<th>$p_T^{cut} > 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ggh_{m_t=\infty}$</td>
<td>30.3±6.1_{-4.7}</td>
<td>0.0730</td>
<td>0.0507</td>
<td>0.0362</td>
</tr>
<tr>
<td>HJ $m_t = \infty$, 5 GeV gen. cut</td>
<td>–</td>
<td>0.0643</td>
<td>0.0413</td>
<td>0.0278</td>
</tr>
<tr>
<td>HJ $m_t = \infty$, 50 GeV gen. cut</td>
<td>–</td>
<td>0.0644</td>
<td>0.0416</td>
<td>0.0277</td>
</tr>
<tr>
<td>HJ-MinLO $m_t = \infty$</td>
<td>32.1±11_{-4.9}</td>
<td>0.0778</td>
<td>0.0509</td>
<td>0.0343</td>
</tr>
<tr>
<td>HJ-MinLO $m_t = 171.3$ GeV</td>
<td>33.8±11_{-5.2}</td>
<td>0.0281</td>
<td>0.0153</td>
<td>0.0089</td>
</tr>
</tbody>
</table>

Before matching to PS

As expected, small impact from PS (2%-5%)

Generators

<table>
<thead>
<tr>
<th>Fixed order level</th>
<th>Total</th>
<th>$p_T^{cut} > 400$ GeV</th>
<th>$p_T^{cut} > 450$ GeV</th>
<th>$p_T^{cut} > 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ggh_{m_t=\infty}$</td>
<td>30.3±6.1_{-4.7}</td>
<td>0.0829±0.045_{-0.0266}</td>
<td>0.0577±0.032_{-0.019}</td>
<td>0.0408±0.0236_{-0.0137}</td>
</tr>
<tr>
<td>HJ $m_t = \infty$, 5 GeV gen. cut</td>
<td>–</td>
<td>0.0651±0.0156_{-0.0131}</td>
<td>0.0417±0.01_{-0.0084}</td>
<td>0.0279±0.0067_{-0.0057}</td>
</tr>
<tr>
<td>HJ $m_t = \infty$, 50 GeV gen. cut</td>
<td>–</td>
<td>0.0651±0.0156_{-0.0131}</td>
<td>0.0418±0.01_{-0.0085}</td>
<td>0.0278±0.0066_{-0.0056}</td>
</tr>
<tr>
<td>HJ-MinLO $m_t = \infty$</td>
<td>32.1±11_{-4.9}</td>
<td>0.0803±0.0087_{-0.0164}</td>
<td>0.0524±0.0118_{-0.0107}</td>
<td>0.0353±0.0078_{-0.0072}</td>
</tr>
<tr>
<td>HJ-MinLO $m_t = 171.3$ GeV</td>
<td>33.8±11_{-5.2}</td>
<td>0.029±0.007_{-0.006}</td>
<td>0.0161±0.0036_{-0.0033}</td>
<td>0.0091±0.0021_{-0.0018}</td>
</tr>
</tbody>
</table>

After matching to PS

[Becker et al., LHCHXSWG note, ’20]
Generators

<table>
<thead>
<tr>
<th>Fixed order level</th>
<th>Total</th>
<th>$p_T^{cut} > 400$ GeV</th>
<th>$p_T^{cut} > 450$ GeV</th>
<th>$p_T^{cut} > 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ggh_{mt=\infty}$</td>
<td>$30.3^{+6.1}_{-4.7}$</td>
<td>0.0730</td>
<td>0.0507</td>
<td>0.0362</td>
</tr>
<tr>
<td>HJ $m_t = \infty$, 5 GeV gen. cut</td>
<td>–</td>
<td>0.0643</td>
<td>0.0413</td>
<td>0.0278</td>
</tr>
<tr>
<td>HJ $m_t = \infty$, 50 GeV gen. cut</td>
<td>–</td>
<td>0.0644</td>
<td>0.0416</td>
<td>0.0277</td>
</tr>
<tr>
<td>HJ-MiNLO $m_t = \infty$</td>
<td>$32.1^{+11.1}_{-4.9}$</td>
<td>0.0778</td>
<td>0.0509</td>
<td>0.0343</td>
</tr>
<tr>
<td>HJ-MiNLO $m_t = 171.3$ GeV</td>
<td>$33.8^{+11.4}_{-5.2}$</td>
<td>0.0281</td>
<td>0.0153</td>
<td>0.0089</td>
</tr>
</tbody>
</table>

- MG5_MC@NLO also includes mass effects:
 - **exact** in Born and real-radiation corrections; through **reweighting** in virtual matrix elements.

- MG5_MC@NLO, HJ-MiNLO and approx. NNLO results **agree** within uncertainties
 - can be used for high-p_T simulations.

[Becker et al., LHCXSWG note, ’20]

[Alwall et al., ’14; Frederix, Frixione, Vryonidou, Wiesemann ’16]
Other source of theoretical uncertainty:

- EW corrections: unknown, expected to be **large**.
- **Scheme and scale choice** for top quark mass in loops.
 - Exact NLO results for $m_t = 173.055$ GeV—pole mass. [Jones, Kerner, Luisoni '18]
 - Different scheme choice: $\overline{\text{MS}}$ mass at given scale, e.g. $\overline{m}_t(\overline{m}_t) \approx 163$ GeV
 - Scheme and scale choice significant for HH production: [Baglio et al., '18; Baglio et al., '20]
 \[
 \frac{d\sigma^{\text{LO}}(gg \rightarrow HH)}{dQ}(Q = 300 \text{ GeV}) = 0.01656^{+62\%}_{-2.4\%} \text{ fb/GeV} \\
 \frac{d\sigma^{\text{NLO}}(gg \rightarrow HH)}{dQ}(Q = 300 \text{ GeV}) = 0.02978^{+6\%}_{-34\%} \text{ fb/GeV}
 \]
 - NLO corrections reduce uncertainty due to scheme and scale choice by factor of ~ 2.
 - Still comparable to scale uncertainty for HH production.
Top Mass Scheme Dependence and EW Corrections

Similar situation for high-pT Higgs:

- ~15% at 400 GeV – comparable to scale uncertainty.
- ~30% at 1 TeV.

- NLO corrections might reduce this, but still likely to be an important source of theoretical uncertainty.

[Jones, Spira; LH2019 SMWG Report]
OTHER PRODUCTION MODES
Impact of Different Production Modes

- Other production modes, esp. VH, become important at $p_T \sim 1$ TeV.

[Becker et al., LHCHXSWG note, ’20]
Theoretical Uncertainties of Different Production Modes

Theoretical uncertainties:

- **VBF:** $< 1\%$.
- **VH:** $\sim 5\%$.
 - Further decreased by (known) NNLO corrections.
 - ZH: large contribution from gluon fusion; corrections to this unknown but likely sizeable.
 - PS effects may become significant when jet vetoes applied.

 [Astill, Bizoń, Re, Zanderighi, ‘18]

- **ttH:** $\sim 10\%-15\%$
 - NNLO corrections unknown.

- EW corrections $\sim 20\%-30\%$ for VH and VBF, $\sim 7\%-12\%$ for ttH.

[Becker et al., LHCHXSWG note, ‘20]
SUMMARY
Summary

- Higgs production at high-p_T is important to probe Higgs couplings to quarks and potential BSM effects.

- Dominant contribution from **gluon fusion:**
 - NLO results with **exact top mass dependence** available \rightarrow k-factor of ~ 2.
 - Combined with **NNLO results in HEFT** \rightarrow scale uncertainty $\sim 10\%$.
 - Generators available including mass effects at higher orders, allowing for **reliable event simulations**.
 - Other important sources of error: **EW corrections, top mass scheme and scale choice**.

- Other production modes important, especially **VH at $p_T \sim 1$ TeV**.
 - Different patterns of radiative corrections.
THANK YOU FOR YOUR ATTENTION
BACKUP SLIDES
ESTIMATING THEORETICAL UNCERTAINTY

Approx. NNLO results:

\[\sum_{\text{HEFT imp.(1), NNLO}} (p_T^{\text{cut}}) = \frac{\sum_{\text{exact, NLO}} (p_T^{\text{cut}})}{\sum_{\text{HEFT, NLO}} (p_T^{\text{cut}})} \sum_{\text{HEFT, NNLO}} (p_T^{\text{cut}}) \]

- 7-point envelope by varying scale uncertainties by factor of 2.
- Combine linearly and quadratically.
- Assume uncertainty due to mass effects in NNLO EFT obtained by rescaling by impact of relative mass corrections at NLO:

\[\delta_{\text{NNLO}} m_t = \frac{\delta \sum_{\text{SM, NLO}} - \delta \sum_{\text{SM, imp.(0), NLO}}}{\delta \sum_{\text{SM, imp.(0), NLO}}} \times \delta \sum_{\text{SM, imp.(0), NNLO}} \]

- Uncertainties added quadratically and linearly.
Additional Plots

• NLO results with full top mass dependence vs. results with reweighted virtual amplitudes, exact Born and real amplitudes.

[Maltoni, Vryonidou, Zaro, ‘14]

• Impact of top mass scheme and scale choice on Hj invariant mass.

[Jones, Spira; LH2019 SMWG Report]