

flavor tagging for enhancing sensitivity for new physics

Yotam Soreq

LHCP-2021, June 10, 2021

flavor tagging

g, *u*, *d*, *s*, *c*, *b*, *t* ?

flavor tagging

g, *u*, *d*, *s*, *c*, *b*, *t* ?

l = g, u, d (light)

S (in many cases considered as light)

c b

flavor tagging

(a)

(b) ATLAS - ATL-PHYS-PUB-2017-013,1907.05120, 2106.03584 CMS - 1712.07158

flavor tagging

for neural network parameterization see Di Bello et al 2004.02665

where do we expect to gain?

where do we expect to gain?

 $\Delta F \neq 0$: strong bound from precision flavor

where do we expect to gain?

 $\Delta F \neq 0$: strong bound from precision flavor

flavor tagged jets give access to $\Delta F = 0$ + high energy processes

where do we expect to gain?

 $\Delta F \neq 0$: strong bound from precision flavor

flavor tagged jets give access to $\Delta F = 0$ + high energy processes

SM: tests of flavor universality (e.g. Z -pole, Higgs)

BSM: models with flavor diagonal effects and suppressed flavor violation (e.g. alignment models, MFV)

tests of SM

gauge universality?

LEP: *b/c* - tagging SLD: +*s* - tagging

gauge universality?

Observable	Experimental value	Ref.	SM prediction	Definition
R_b	0.21629 ± 0.00066	[47]	0.21578	$\frac{\Gamma(Z \rightarrow b\bar{b})}{\sum_{q} \Gamma(Z \rightarrow q\bar{q})}$
R_c	0.1721 ± 0.0030	[47]	0.17226	$rac{ \Gamma(Z ightarrow car{c}) }{ \sum_q \Gamma(Z ightarrow qar{q}) }$
$A_b^{ m FB}$	0.0992 ± 0.0016	[47]	0.1032	$\frac{3}{4}A_eA_b$
$A_c^{ m FB}$	0.0707 ± 0.0035	[47]	0.0738	$\frac{3}{4}A_eA_c$
A_b	0.923 ± 0.020	[47]	0.935	$\frac{\Gamma(Z \rightarrow b_L \bar{b}_L) - \Gamma(Z \rightarrow b_R \bar{b}_R)}{\Gamma(Z \rightarrow b\bar{b})}$
A_c	0.670 ± 0.027	[47]	0.668	$\frac{\Gamma(Z \rightarrow c_L \bar{c}_L) - \Gamma(Z \rightarrow c_R \bar{c}_R)}{\Gamma(Z \rightarrow c \bar{c})}$
A_s	0.895 ± 0.091	[48]	0.935	$\frac{\Gamma(Z \to s_L \bar{s}_L) - \Gamma(Z \to s_R \bar{s}_R)}{\Gamma(Z \to s \bar{s})}$
R_{uc}	0.166 ± 0.009	[45]	0.1724	$\frac{\Gamma(Z \rightarrow u\bar{u}) + \Gamma(Z \rightarrow c\bar{c})}{2\sum_{q} \Gamma(Z \rightarrow q\bar{q})}$

LEP: *b/c* - tagging SLD: +*s* - tagging

gauge universality?

Observable	Experimental value	Ref.	SM prediction	Definition
R_b	0.21629 ± 0.00066	[47]	0.21578	$\frac{\Gamma(Z \rightarrow b\bar{b})}{\sum_{q} \Gamma(Z \rightarrow q\bar{q})}$
R_c	0.1721 ± 0.0030	[47]	0.17226	$rac{ \Gamma(Z ightarrow car{c})}{\sum_q \Gamma(Z ightarrow qar{q})}$
$A_b^{ m FB}$	0.0992 ± 0.0016	[47]	0.1032	$\frac{3}{4}A_eA_b$
$A_c^{ m FB}$	0.0707 ± 0.0035	[47]	0.0738	$\frac{3}{4}A_eA_c$
A_b	0.923 ± 0.020	[47]	0.935	$\frac{\Gamma(Z \rightarrow b_L \bar{b}_L) - \Gamma(Z \rightarrow b_R \bar{b}_R)}{\Gamma(Z \rightarrow b\bar{b})}$
A_c	0.670 ± 0.027	[47]	0.668	$\frac{\Gamma(Z \rightarrow c_L \bar{c}_L) - \Gamma(Z \rightarrow c_R \bar{c}_R)}{\Gamma(Z \rightarrow c \bar{c})}$
A_s	0.895 ± 0.091	[48]	0.935	$\frac{\Gamma(Z \to s_L \bar{s}_L) - \Gamma(Z \to s_R \bar{s}_R)}{\Gamma(Z \to s \bar{s})}$
R _{uc}	0.166 ± 0.009	[45]	0.1724	$\frac{\Gamma(Z \rightarrow u\bar{u}) + \Gamma(Z \rightarrow c\bar{c})}{2\sum_{q} \Gamma(Z \rightarrow q\bar{q})}$

flavorful probes of Z couplings and dim-6 operators

LEP: b/c - tagging SLD: +S - tagging A_b^{FB} A_b

gauge universality?

Observable	Experimental value	Ref.	SM prediction	Definition
R_b	0.21629 ± 0.00066	[47]	0.21578	$\frac{\Gamma(Z \to b\bar{b})}{\sum_{q} \Gamma(Z \to q\bar{q})}$
R_c	0.1721 ± 0.0030	[47]	0.17226	$rac{ \Gamma(Z ightarrow car{c})}{\sum_q \Gamma(Z ightarrow qar{q})}$
$A_b^{ m FB}$	0.0992 ± 0.0016	[47]	0.1032	$\frac{3}{4}A_eA_b$
$A_c^{ m FB}$	0.0707 ± 0.0035	[47]	0.0738	$\frac{3}{4}A_eA_c$
A_b	0.923 ± 0.020	[47]	0.935	$\frac{\Gamma(Z \rightarrow b_L \bar{b}_L) - \Gamma(Z \rightarrow b_R \bar{b}_R)}{\Gamma(Z \rightarrow b \bar{b})}$
A_c	0.670 ± 0.027	[47]	0.668	$\frac{\Gamma(Z \rightarrow c_L \bar{c}_L) - \Gamma(Z \rightarrow c_R \bar{c}_R)}{\Gamma(Z \rightarrow c \bar{c})}$
A_s	0.895 ± 0.091	[48]	0.935	$\frac{\Gamma(Z \to s_L \bar{s}_L) - \Gamma(Z \to s_R \bar{s}_R)}{\Gamma(Z \to s \bar{s})}$
R _{uc}	0.166 ± 0.009	[45]	0.1724	$\frac{\Gamma(Z \rightarrow u\bar{u}) + \Gamma(Z \rightarrow c\bar{c})}{2\sum_{q} \Gamma(Z \rightarrow q\bar{q})}$

flavor tagging allows to **directly** determine V_{cb} at the weak scale

Harrison, Vladimirov - 1810.09424

flavor tagging allows to **directly** determine V_{ch} at the weak scale

Harrison, Vladimirov - 1810.09424

flavor tagging allows to **directly** determine V_{ch} at the weak scale

flavor tagging allows to **directly** determine V_{ch} at the weak scale

the source of the charged fermions mass?

the source of the charged fermions mass?

LHC (ATLAS/CMS/LHCb): b/c - tagging future e^+e^- : +*s* - tagging

the source of the charged fermions mass?

LHC (ATLAS/CMS/LHCb): b/c - tagging future e^+e^- : +*s* - tagging

$$pp \to Vh, h \to \bar{c}c, \bar{b}b$$

 $V = W, Z$

the source of the charged fermions mass?

LHC (ATLAS/CMS/LHCb): b/c - tagging future e^+e^- : +*s* - tagging

$$pp \rightarrow Vh, h \rightarrow \bar{c}c, \bar{b}b$$

 $V = W, Z$

effective Lagrangian

$$y_f \tilde{H} \bar{f}_L f_R + \frac{c_f}{\Lambda^2} \tilde{H} \bar{f}_L f_R (H^{\dagger} H)$$

$$\Lambda_f \equiv \frac{\Lambda}{\sqrt{c_f}} = 4 \text{ TeV} \sqrt{\frac{\frac{y_c^{\text{SM}}}{y_c^{\text{SM}}}}{\left|\kappa_f - 1\right|}}$$

$pp \rightarrow Vh, h \rightarrow \bar{c}c, \bar{b}b$

ATLAS, CMS

 $\mu_{b\bar{b}} = 1.1 \pm 0.3$

$pp \to Vh, h \to \bar{c}c, bb$ atlas, cms

$$\mu_{c\bar{c}} < 26, (y_c/y_c^{SM} < 8.5)$$

recent ATLAS

 $\mu_{b\bar{b}} = 1.1 \pm 0.3$

$$pp \rightarrow Vh, h \rightarrow \bar{c}c, bb$$
 atlas, cms

$$\mu_{c\bar{c}} < 26, (y_c/y_c^{SM} < 8.5)$$

recent ATLAS

(global fit $y_c/y_c^{SM} < 6.2$)

$$pp \to Vh, h \to \bar{c}c, \bar{b}b$$
 atlas, cms

$$\mu_{b\bar{b}} = 1.1 \pm 0.3$$

 $\mu_{c\bar{c}} < 26, (y_c/y_c^{SM} < 8.5)$

recent ATLAS

(global fit $y_c/y_c^{SM} < 6.2$)

 $\Lambda_c \gtrsim 1.5 \,\mathrm{TeV}$

ATLAS, CMS Delaunay et al 1310.7029, Perez et al 1505.06689, 1503.00290 Brivio et al 1507.02916

$$pp \to Vh, h \to \bar{c}c, \bar{b}b$$
 atlas, cms

$$\mu_{c\bar{c}} < 26, (y_c/y_c^{SM} < 8.5)$$

recent ATLAS

(global fit $y_c/y_c^{SM} < 6.2$)

 $\mu_{b\bar{b}} = 1.1 \pm 0.3$

$$\Lambda_c \gtrsim 1.5 \,\mathrm{TeV}$$

ATLAS, CMS Delaunay et al 1310.7029, Perez et al 1505.06689, 1503.00290 Brivio et al 1507.02916

s-tagging possible at e^+e^- collider projected $\mu_{ss} < 14(7)$ with 5(20) ab^{-1}

Duarte-Campderros et at 1811.09636

flavorful SUSY/composite search

Mahbubani, Papucci, Perez, Ruderman, Weiler 1212.3328 Blanke, Giudice, Paradis, Perez, Zupan - 1302.7232 Da Rold, Delaunay, Grojean, Perez - 1208.1499 Delaunay, Flacke, Gonzalez-Fraile, Lee, Panico - 1311.2072 Galon, Perez, Shadmi - 1306.6631

flavorful SUSY/composite search

Mahbubani, Papucci, Perez, Ruderman, Weiler 1212.3328 Blanke, Giudice, Paradis, Perez, Zupan - 1302.7232 Da Rold, Delaunay, Grojean, Perez - 1208.1499 Delaunay, Flacke, Gonzalez-Fraile, Lee, Panico - 1311.2072 Galon, Perez, Shadmi - 1306.6631

flavorful SUSY search

EFT: b-tag ATLAS analysis

ATALS *b*-tag bound: $\Lambda \gtrsim 2 \text{ TeV}$ *B* rare decays: $\Lambda \gtrsim 35 \text{ TeV}$

summary

- I flavor tagging is very powerful tool, both for SM tests and for BSM searches
- expect to gain the flavor conserving observables, related to high energy process (Z, Higgs)
- * useful in $t \rightarrow ch, cZ$, mostly distinguish between light and charm flavor
- * the SM test (Z-pole, Higgs) tightly related to BSM searches and bound multi TeV scale new physics
- I flavor tagging is also useful in other BSM search (e.g. SUSY)

Backups

EFT: charm operators

Figure 4. Exclusion limits at 95% CL on $c \to u\ell^+\ell^-$ transitions in the $(\epsilon_{V_i}^{ee}, \epsilon_{V_i}^{\mu\mu})$ plane, where i = LL, RR, LR, RL. The region outside the red contour is excluded by D meson decays, while the region outside the blue contour is excluded by high- p_T LHC.

Fuentes-Martin, Greljo, Martin Camalich, Ruiz-Alvarez - 2003.12421