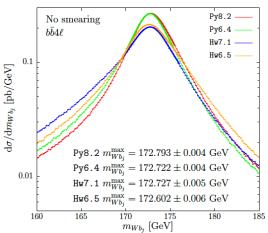
Theory status of top quark properties

Alexander Mitov

Cavendish Laboratory

Contents

- ✓ Top quark mass
- ✓ Top quark width
- ✓ Top Yukawa coupling
- ✓ Spin correlations in top quark pair production and decay
- ✓ Top quark pair charge asymmetry at LHC


Many new measurements are results not covered in this talk can be found in the talks by

- Malgorzata Worek
- Anna Kulesza
- Nils Faltermann

- ✓ The precise determination of the top quark mass is a major goal for the LHC
- ✓ This requires both precise measurements and high-quality theory predictions
- ✓ Typically, the top quark pole mass is being extracted. Two broad approaches:
 - √ (1 of 2) Direct: reconstruct the top quark and then get the mass off of the Breit–Wigner.
 - ✓ This task requires sophisticated Monte Carlos with full off-shell effects. This has been developed within POWHEG in the course of several years

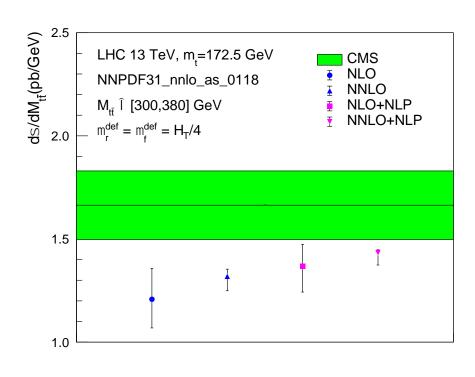
Ferrario Ravasio, Ježo, Nason, Oleari 2018-2019

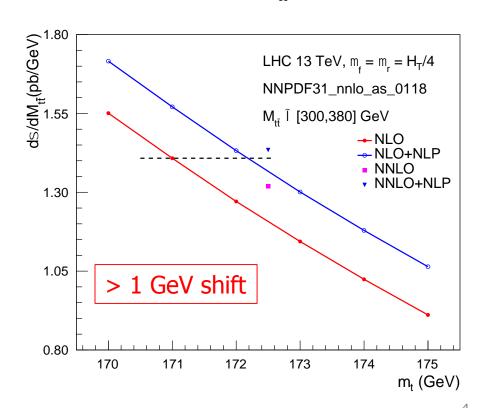
- ✓ Full top reconstruction is hard to do at higher orders so one needs a well defined proxy.
- ✓ Best known choice: maximum of the M_{Wbi} distribution

	$bar{b}4\ell$	-hvq, $R=0.5$	[MeV]
	$m_{Wb_j}^{ m max}$	$m_{Wb_j}^{\text{max}}$ (smear)	$E_{b_j}^{ m max}$
Py8.2 (FSR)	24±2	89 ± 2	257 ± 53
Py6.4 (FSR)	12±2	-265 ± 2	-147 ± 106

From arXiv:1906.09166

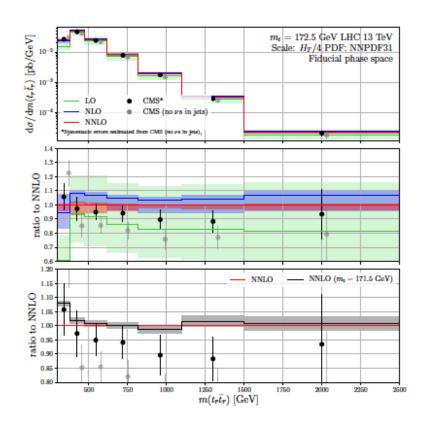
Table 3: Differences between the $b\bar{b}4\ell$ and hvq predictions for $m_{Wb_j}^{\rm max}$ (with and without smearing) and $E_{b_j}^{\rm max}$, showered by Py8.2 and Py6.4.

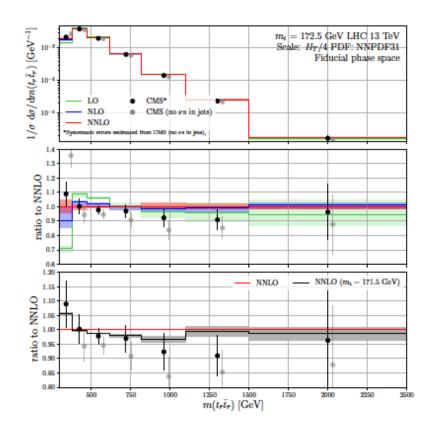

- Can this be further improved on the theory side? Would be very hard!
 - > All existing NNLO calculations are in the narrow-width approximation.
 - First calculations with NNLO precision + parton shower for stable tops


Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi 2020

- ✓ Two broad approaches:
 - √ (2 of 2) Indirect: extract the pole mass (or any other mass definition that may be available) from calculations of kinematic distributions or cross sections
 - ✓ Many measurements; I'll mention two newer calculations relevant for the threshold behavior of the tt x-section (where most of the mass sensitivity is)
 - 1. Non-relativistic Coulomb corrections very close to threshold

Ju, Wang, Wang, Xu, Xu, Li Lin Yang: 1908.02179, 2004.03088

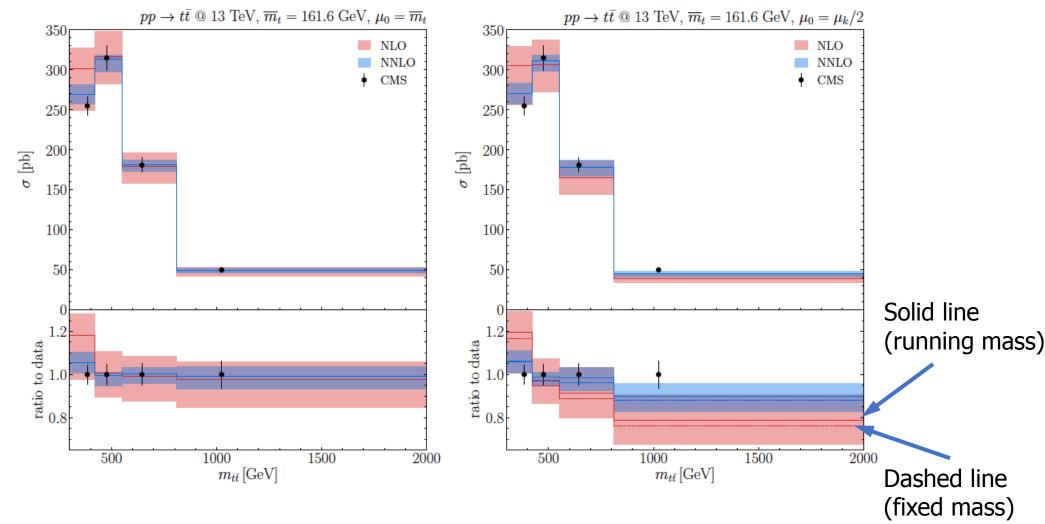

 \checkmark Tiny effect on the cross-section but important for the first M_{tt} bin.



- ✓ Two broad approaches:
 - √ (2 of 2) Indirect: extract the pole mass (or any other mass definition that may be available) from calculations of kinematic distributions or cross sections
 - Many measurements; I'll mention two newer calculations relevant for the threshold behavior of the tt x-section (where most of the mass sensitivity is)

 B-jet related subtleties and top definition have major impact on m_{top} in the threshold region
 Czakon, Mitov, Poncelet arXiv:2008.11133

- ✓ The extraction of the MSbar mass has attracted a lot of attention.
- Formally equivalent to the pole one at a given order, however, large numeric differences are present.
- Results between the two schemes have different convergence properties but this can be removed by a (good) scale choice.
- ✓ Recent NNLO calculation of differential (stable) tt production in the MSbar mass scheme


Catani, Devoto, Grazzini, Kallweit, Mazzitelli arXiv:2005.00557

Differential distributions computed with pole or MSbar top mass are indeed found equivalent at NNLO:

In Fig. 5 we also observe that the shape differences between the $\overline{\rm MS}$ and pole schemes are significantly reduced by the inclusion of high-order corrections, and they are already quite small at NNLO. Moreover, and importantly, in all the kinematical regions of Fig. 5 we note a sizeable overlap between the $\overline{\rm MS}$ and pole scheme uncertainty bands at NNLO: this fact shows the expected similarity between the two schemes once enough perturbative orders are included in the calculation.

✓ An interesting question: is the extraction of the Msbar mass somehow different (better, worse?) than in the pole scheme?

Catani, Devoto, Grazzini, Kallweit, Mazzitelli arXiv:2005.00557

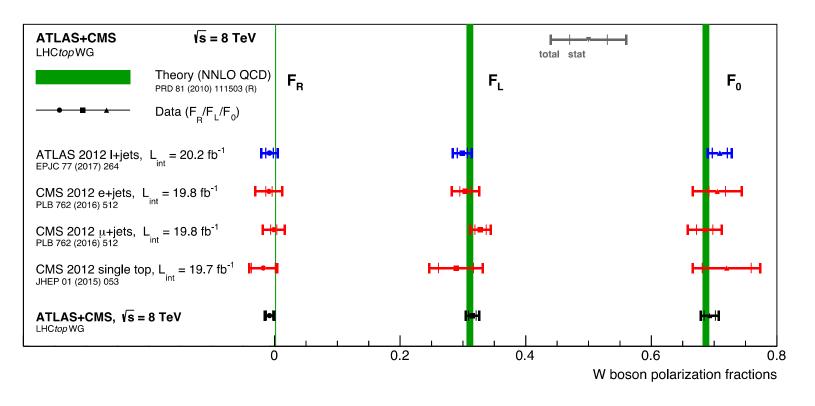
- Effects of running mass are very small:
 - Smaller than data uncertainty
 - Much smaller than the overall theory uncertainty
- ✓ It will be hard to extract ...

Top quark Width

- ✓ The top quark width is known at NNLO
 - ✓ Computed by many groups in the last 20 years. The most complete calculation involves NNLO QCD, NLO EW and off-shell effects

Jun Gao, Chong Sheng Li, Hua Xing Zhu 2012

- ✓ An interesting question is if this can be extended beyond NNLO in QCD (may be of interest for HL-LHC)
 - Recently, 3-loop corrections computed for muon decay and B-decays


Fael, Schönwald, Steinhauser 2020 Czakon, Czarnecki, Dowling 2021

- A universal 3-loop contributions (the three-loop soft function for heavy-to-light quark decay) have also recently been computed
 Brüser, Ze Long Liu, Stahlhofen 2019
- Something to look forward to in the future?

W helicity fractions in top decay

✓ W-helicity fractions know at NNLO

Czarnecki, Korner, Piclum 2010

From arXiv:2106.03478

✓ The current precision of theory is higher than exp

Top Yukawa

- ✓ The determination of the top-Yukawa coupling is a major goal for the LHC
- ✓ Various processes can be utilized:
- ✓ "Direct" measurement: ttH with H→bb

See also talks by

- Malgorzata Worek
- Anna Kulesza
- ✓ The SM predictions for signals and backgrounds are at NLO and are very sophisticated.
- ✓ Can further theory refinement be expected? And are they needed?
 - For backgrounds like ttbb this is extremely hard.
 - For ttH this <u>may not be</u> out of the question. A number of $2 \rightarrow 3$ processes are already known at NNLO $(3\gamma,2\gamma+j,3jet)$ so this process is not unfeasible anymore. The main obstacle is the availability of two-loop amplitudes.

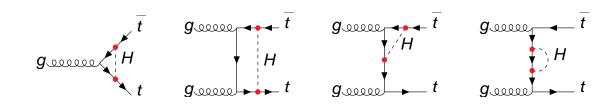
Chawdhry, Czakon, Mitov, Poncelet 2019, 2020 Czakon, Mitov, Poncelet 2019, 2021

- ✓ Indirect: constrain Y_t from virtual contributions in processes like tttt and tt
 Cao, Chen, Liu arXiv:1602.01934
 - ✓ Further improvements to tttt production is unlikely, soon

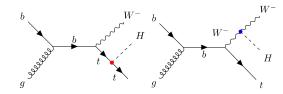
See also talk by Stefan Richter

✓ The CMS study [arXiv:2009.07123] relies on NLO QCD+EW predictions for ttbar. This can already be computed at NNLO in QCD and NLO EW with leptonic decays

Czakon, Mitov, Poncelet '2020 Frederix, Tsinikos, Vitos '2021


Top Yukawa

Recent investigation of the CP properties of the top Yukawa coupling


Martini, Pan, Schulze, Xiao 2021

$$\mathcal{L}(Htt) = -\frac{m_t}{v} \bar{\psi}_t \left(\kappa + i \,\tilde{\kappa} \gamma_5\right) \psi_t \, H$$

- ✓ Comprehensive analysis in NLO SM kappa framework
- Considered are final states
 - ✓ without Higgs:

✓ with Higgs (ttH and tH)

- ✓ Defining $f_{\text{CP}} = \frac{|\tilde{\kappa}|^2}{|\kappa|^2 + |\tilde{\kappa}|^2} \text{sign}\left(\frac{\tilde{\kappa}}{\kappa}\right)$ exclusion limits on f_{CP} are placed for 300fb⁻¹ and 3000fb⁻¹
 - Limits depend on the final state

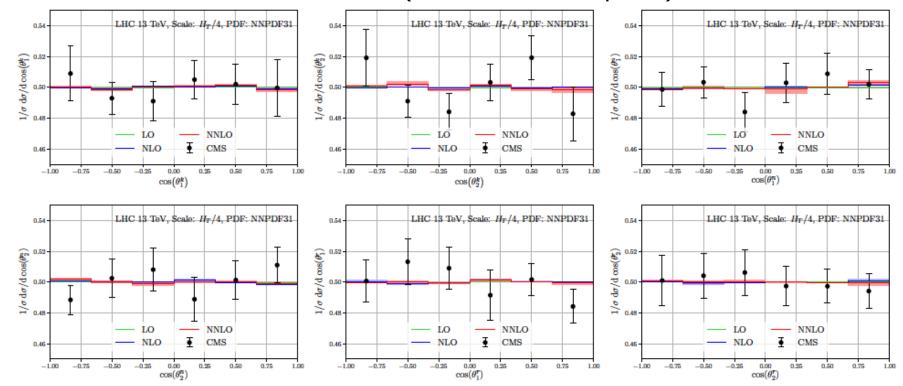
Spin-correlations in top-pair production and decay

&

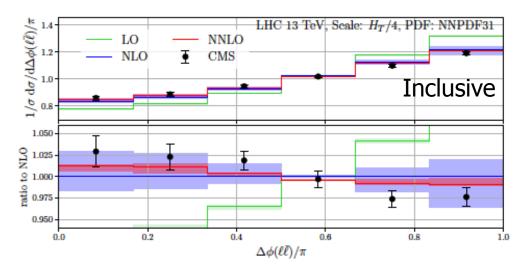
Top-pair Asymmetry

The spin-density matrix formalism

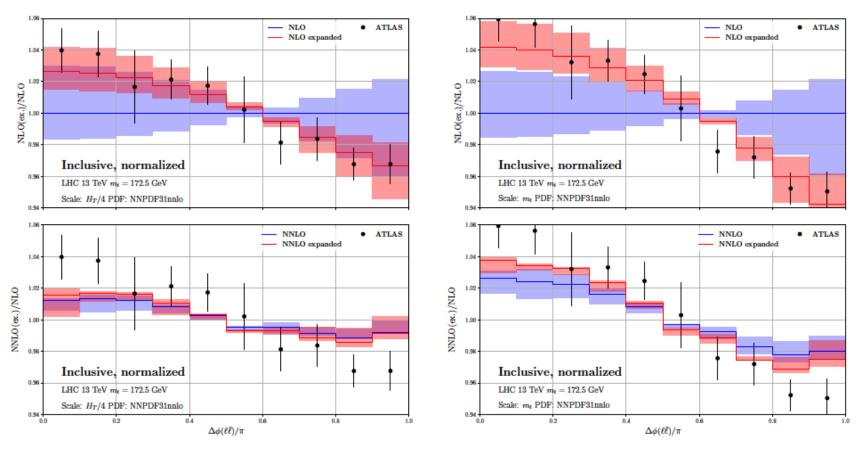
Discussion based on: Czakon, Mitov, Poncelet arXiv:2008.11133 Formalism developed by: Bernreuther, Brandenburg hep-ph/9312210


$$|\mathcal{M}(q\bar{q}/gg \to t\bar{t} \to \ell^+\ell^-\nu\bar{\nu}b\bar{b})|^2 \sim \text{Tr}\{\rho R\bar{\rho}\}\$$

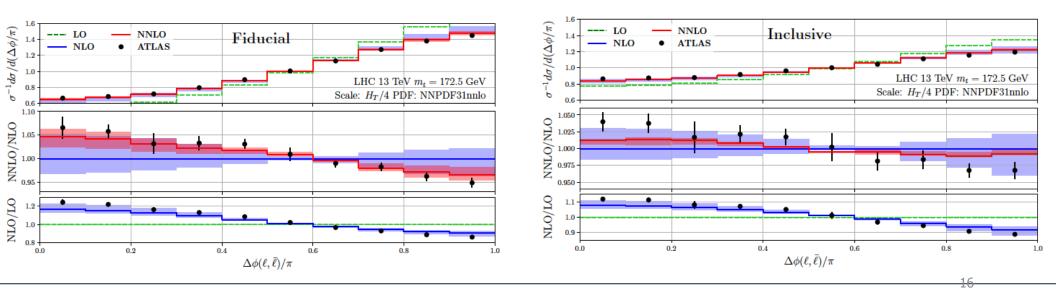
$$R = \tilde{A} \, \mathbb{1} \otimes \mathbb{1} + \tilde{B}_i^+\sigma^i \otimes \mathbb{1} + \tilde{B}_i^-\mathbb{1} \otimes \sigma^i + \tilde{C}_{ij}\sigma^i \otimes \sigma^j$$


✓ In practice, one works with a proxy for the spin-density matrix R

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_1^i \mathrm{d}\cos\theta_2^j} = \frac{1}{4} \left(1 + B_1^i \cos\theta_1^i + B_2^j \cos\theta_2^j - C_{ij} \cos\theta_1^i \cos\theta_2^j \right)$$


- ✓ With all angles defined in a specially designed frame
- ✓ NNLO vs data for selected distributions (all have been computed):

Spin correlations in angular distributions


Czakon, Mitov, Poncelet arXiv:2008.11133

Spin correlations in angular distributions

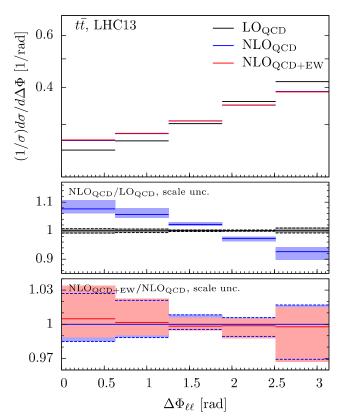
Behring, Czakon, Mitov, Papanastasiou, Poncelet arXiv:1901.05407

- Main finding (compare to previous slide):
 - ✓ NNLO QCD describes data in the fiducial region
 - ✓ Does not describe it in the extrapolated ("Inclusive") phase space (see previous slide)
 - Expanded definition does make a big difference at NLO but no difference a NNLO
- Results point towards the need for improved understanding of modeling of final states

Spin correlations in angular distributions

New calculation of complete-NLO+LO decay (in NWA)

Frederix, Tsinikos, Vitos arXiv:2105.11478


Shown are corrections to tt spin correlations and asymmetries (at decay level)

See also talk by Nils Faltermann

Note the existing NNLO QCD + NLO EW calculation is at top-quark-level

Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro 1711.03945

✓ It uses parameters that are compatible with the QCD calculations shown above.

$$A_C^{\ell\ell} = \frac{\sigma(\Delta\eta_{\ell\ell} > 0) - \sigma(\Delta\eta_{\ell\ell} < 0)}{\sigma(\Delta\eta_{\ell\ell} > 0) + \sigma(\Delta\eta_{\ell\ell} < 0)} \qquad A_{\Delta\Phi} = \frac{\sigma(|\Delta\Phi_{\ell\ell}| > \frac{\pi}{2}) - \sigma(|\Delta\Phi_{\ell\ell}| < \frac{\pi}{2})}{\sigma(|\Delta\Phi_{\ell\ell}| > \frac{\pi}{2}) + \sigma(|\Delta\Phi_{\ell\ell}| < \frac{\pi}{2})},$$

		Unexpanded		Expanded	
Asymmetry	LO QCD $[\%]$	NLO QCD $[\%]$	NLO QCD+EW [%]	NLO QCD $[\%]$	NLO QCD+EW [%]
A_C^{tt}	0	$0.453(5)^{+28.2\%}_{-20.5\%}$	$0.546(6)_{-18.0\%}^{+25.1\%}$	$0.62(2)_{-14.8\%}^{+18.1\%}$	$0.73(3)_{-11.5\%}^{+13.8\%}$
$A_C^{\ell\ell}$	0	$0.27(2)^{+29.3\%}_{-21.4\%}$	$0.33(3)_{-17.8\%}^{+25.0\%}$	$0.36(3)_{-15.9\%}^{+19.3\%}$	$0.45(4)_{-12.0\%}^{+14.6\%}$
$A_{\Delta\Phi}$	$17.51(1)_{-2.8\%}^{+3.2\%}$	$12.65(2)_{-14.8\%}^{+8.3\%}$	$12.42(3)^{+8.7\%}_{-15.5\%}$	$10.88(3)_{-10.1\%}^{+7.2\%}$	$10.58(4)_{-10.5\%}^{+7.4\%}$
$A_{\Delta heta}$	$14.63(1)_{-4.6\%}^{+4.0\%}$	$16.03(2)_{-2.2\%}^{+4.0\%}$	$16.24(2)_{-2.2\%}^{+4.1\%}$	$16.54(3)_{-1.7\%}^{+2.9\%}$	$16.83(4)^{+2.8\%}_{-1.5\%}$

Thank you!