

CP violation in charm with the LHCb experiment

Serena Maccolini

on behalf of the LHCb collaboration

LHC Physics conference - June 9, 2021 Paris, France - Only virtual

Why study charm physics?

- Searching for *CP* violation (**CPV**) in **charm** decay is a 57R 55 test to the Standard Model:
 - New Physics (NP) contributions could be hidden in the loops
 - Up-type quark: <u>complementary</u> to studies in K and B systems

- Small CP asymmetries expected (0.01%÷0.1%)
 - CKM/GIM suppression
 - Large uncertainties due to low-energy strong interaction effects [Phys.Lett. B222 (1989) 501]
- CPV in charm has been searched for since decades, In 2019, observed in the decay of D⁰ meson!
- Why at LHCb?

Huge **cc** production cross-section:

$$\sigma(pp \rightarrow c\overline{c} X)_{\sqrt{s} = 13 \text{ TeV}} \cong 2.4 \text{ mb}$$

[JHEP 03 (2016) 159]

Mixing of neutral D mesons

Mass eigenstates are <u>not</u> the *flavour* eigenstates:

$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\bar{D}^0\rangle$$

• This causes $\mathbf{D} \leftrightarrow \bar{\mathbf{D}}$ transitions described by

$$\begin{cases} x = \frac{m_1 - m_2}{\Gamma} \\ y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma} \end{cases}$$

• If *CP* is violated, two more observables:
$$\begin{cases} |q/p| \\ \phi = arg(q/p) \end{cases}$$
 or $\Delta x, \Delta y$

CP violation

CPV in the **decay** Occurs if $|A_f|^2 \neq |\bar{A}_{\bar{f}}|^2$ (observed in 2019)

Indirect CPV in **interference** between *mixing* and *decay* Occurs if $\phi_{\lambda_f} \equiv arg(qA_{\bar{f}}/pA_f) \neq 0$

Measurement of Do mixing parameters

• Using $D^0 \rightarrow K_S \pi^- \pi^+$ decays (rich resonance structure) which offer a good sensitivity to **mixing parameters**

[Phys. Rev. D 99, 012007]

- Time-dependent Dalitz-plot analysis performed with the Bin-Flip approach
 - → dynamics as input from external measurements
 - → no accurate efficiency modeling
- $D^0 \rightarrow K_S \pi^- \pi^+$ decay receives contribution from Cabibbo-favoured and doubly-Cabibbo-suppressed decay amplitudes
- CP symmetry is conserved in the decay with good approximation
- Direct access to the mixing phase independent of the final state (φ₂ for detail see [Kagan & Silvestrini 2020])

- Using prompt $D^{*+} \rightarrow D^{0}\pi^{+}_{tag}$ decays collected during Run 2 (2015-2018,~5.4 fb⁻¹)
- Measure ratios of yields in *Dalitz* bins - $m{b}$ and $m{b}$ in decay-time bins $m{j}$ N_{-bi}

 $R_{bj} = \frac{N_{-bj}}{N_{bj}}$

Assuming no CP violation:

$$R_{bj} \approx r_b - \sqrt{r_b} [(1 - r_b)c_b y - (1 + r_b)x] \langle t \rangle_j$$

 $x, y \rightarrow mixing \ parameters$ $r_b \rightarrow value \ of the ratio for <math>t = 0$ $c_b, c_s \rightarrow strong-phases$

$$m_{\pm}^2 \equiv \begin{cases} m^2 (K_S^0 \pi^{\pm}) & \text{for } D^0 \to K_S^0 \pi^+ \pi^- \\ m^2 (K_S^0 \pi^{\mp}) & \text{for } \overline{D}{}^0 \to K_S^0 \pi^+ \pi^- \end{cases}$$

• Use binning which minimizes strong-phase variations: c_b, c_s from CLEO and BESIII [Phys. Rev. D 82, 112006, Phys. Rev. D 101, 112002]

Determination of R_{bj}[±]

- 416 separate invariant mass fits to determine R_{bj} for D^0 and \bar{D}^0 candidates
- Yields are then corrected for two effects that do <u>not</u> cancel in the ratio:

Experimentally induced *correlations* between the phase-space and decay-time

→ Data driven approach to remove this correlation

Charge-dependent efficiencies \rightarrow Detection asymmetries $A_{det}(\pi^+\pi^-)$ measured by means of control samples

$$A_{\text{meas}}(D_{s}^{+} \to \pi^{+}\pi^{+}\pi^{-}) = A_{\text{det}}(\pi^{+}\pi^{-}) + A_{\text{det}}(\pi^{+}) + A_{\text{prod}}(D_{s}^{+}) + A_{\text{trigger}}(D_{s}^{+}) + A_{\text{meas}}(D_{s}^{+} \to \phi\pi^{+}) = A_{\text{det}}(\pi^{+}) + A_{\text{prod}}(D_{s}^{+}) + A_{\text{trigger}}(D_{s}^{+})$$

Fit results

The deviations from constant values are due to mixing

Results

 After a meticulous validation and evaluation of systematic uncertainties based on the emulation of nuisance effects (more details in backup), the mixing parameters are measured to be

$$x_{CP} = (3.97 \pm 0.46 \pm 0.29) \times 10^{-3}$$
 Parameter Value 95.5% CL interval $y_{CP} = (4.59 \pm 1.20 \pm 0.85) \times 10^{-3}$ $\Delta x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$ $\Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$ Parameter Value 95.5% CL interval $x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$ $y = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$

- First observation (at the level of 7 std. dev.) of the mass difference between D⁰ eigenstates!!
- CP symmetry is conserved, but limits on mixing-induced CP violation significantly improved!

LHCb milestones

In CP violation ...

Recent LHCb results in charm physics

CPV in $D+_{(s)}\rightarrow h+\pi^{0}$, $D+_{(s)}\rightarrow h+\eta$ decays

[arXiv:2103.11058]

$$\mathcal{A}_{CP}(D^{+} \to \pi^{+} \pi^{0}) = (-1.3 \pm 0.9 \pm 0.6)\%,$$

$$\mathcal{A}_{CP}(D^{+} \to K^{+} \pi^{0}) = (-3.2 \pm 4.7 \pm 2.1)\%,$$

$$\mathcal{A}_{CP}(D^{+} \to \pi^{+} \eta) = (-0.2 \pm 0.8 \pm 0.4)\%,$$

$$\mathcal{A}_{CP}(D^{+} \to K^{+} \eta) = (-6 \pm 10 \pm 4)\%,$$

$$\mathcal{A}_{CP}(D_{s}^{+} \to K^{+} \pi^{0}) = (-0.8 \pm 3.9 \pm 1.2)\%,$$

$$\mathcal{A}_{CP}(D_{s}^{+} \to \pi^{+} \eta) = (-0.8 \pm 0.7 \pm 0.5)\%,$$

$$\mathcal{A}_{CP}(D_{s}^{+} \to K^{+} \eta) = (-0.9 \pm 3.7 \pm 1.1)\%,$$

Time-dependent CPV in D⁰→h-h+ decays

[arXiv:2105.09889]

$$\Delta Y = (-2.7 \pm 1.3 \pm 0.3) \times 10^{-4}$$

LHCb impact on world averages

The combination procedure follows closely HFLAV methods

Including ΔY Run 2 measurement

Conclusions

- The LHCb Collaboration observed for the first time a difference between
 D⁰ mass eigenstates with a significance of about 7 standard deviations
- No mixing-induced CP violation was observed, but limits have been significatively improved
- Search for CPV in pure mixing and interference of decay amplitudes with and without mixing remains an important tool for constraining New Physics
- LHCb is dominating the world scenario and many other measurements are in progress.
- The upcoming LHCb-upgrade will start a new era of very high precision measurements in the search for time-dependent and independent CPV

[J. Instrum. 3, S08005 (2008)]

The LHCb detector J. Instruation at the Large Hadron Collider (CERN)

$$\sigma(pp \rightarrow b\bar{b} X)_{\sqrt{s} = 13 \text{ TeV}} \sim 144 \mu b$$

[PRL118,052002 (2017)]

$$\sigma(pp \rightarrow c\overline{c} X)_{\sqrt{s} = 13 \text{ TeV}} \sim 2.4 \text{ mb}$$

[JHEP 03 (2016) 159]

- LHCb is a forward spectrometer (2 < η < 5) designed for B physics
- Momentum resolution: 0.4% at 5 GeV and 0.6% at 100 GeV.
- VELO performances:
 Impact parameter
 resolution of 13-20 µm at high p_T
 90% correct forward/ backward decay assignment
- Muon ID efficiency: 97% with 1-3% μ → π misidentification.

Mixing of neutral D mesons

• Mass eigenstates are not the flavor eigenstates:

$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\bar{D}^0\rangle$$

• This causes $D \leftrightarrow \bar{D}$ transitions described by

$$x=rac{m_1-m_2}{\Gamma}$$

$$y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

 $|\langle P^0(0)|P^0(t)\rangle|^2 \propto e^{-\Gamma t} [\cosh(y\Gamma t) + \cos(x\Gamma t)]$ $|\langle P^0(0)|\bar{P}^0(t)\rangle|^2 \propto e^{-\Gamma t} [\cosh(y\Gamma t) - \cos(x\Gamma t)]$

Tiny mixing in charm!

CP violation

- CP is the combination of the charge conjugation C and parity transformation P
- If there is a difference between the ways nature treats matter and antimatter then CP is violated
- Within the Standard Model (SM), CP is naturally violated in weak charged-current interactions of quarks because of the complex phase in the CKM matrix

$$-\mathcal{L}_{W^\pm} = rac{\mathsf{g}}{\sqrt{2}} egin{pmatrix} \overline{u} & \overline{c} & \overline{t} \end{pmatrix} egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} egin{pmatrix} d \ s \ b \end{pmatrix} \gamma^\mu W_\mu^+ + h.c.$$

The D^0 or \bar{D}^0 tagging

Prompt: coming form primary vertex

$$D^{*+-} \rightarrow \stackrel{\frown}{D}{}^{0} \pi^{+-}_{soft}$$

- D⁰ points to PV (small IP)
- Decay time acceptance
- High yields

Semi-leptonic: coming from B decays

$$B \rightarrow D^0 \mu^{-+}X$$

- D⁰ does not point to PV
- Access to all D⁰ decay times

u-tagged

Analysis strategy

- Production flavour of D^0 and D^0 identified by the reconstruction of $D^{*+} \rightarrow D^0 \pi^+_{tag}$ (apex \rightarrow "±")
- 8 bins over the Dalitz plane chosen to have almost constant strong-phase differences (subscript → "b")
- Dalitz plane divided into two regions:
 m+>m- large contribution from CF decays
 (b > 0)
 m+<m- larger contribution from DCS decays
- Data further divided into 13 bins of decay-time (subscript → "j")
- A total of 416 disjoint data samples

(b < 0)

Binning from CLEO:

$$m_{\pm}^2 \equiv \begin{cases} m^2 (K_S^0 \pi^{\pm}) & \text{for } D^0 \to K_S^0 \pi^+ \pi^- \\ m^2 (K_S^0 \pi^{\mp}) & \text{for } \overline{D}{}^0 \to K_S^0 \pi^+ \pi^- \end{cases}$$

The formalism

 For each decay-time interval (j), the ratio R_{bj}[±] of the number of decays in each negative Dalitz-plane bin (-b) to its positive counterpart (+b) is measured

$$R_{bj}^{\pm} \approx \frac{r_b + (1/4)r_b\langle t^2\rangle_j \mathrm{Re}(z_{CP}^2 - \Delta z^2) + (1/4)\langle t^2\rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b}\langle t\rangle_j \mathrm{Re}[X_b^*(z_{CP} \pm \Delta z)]}{1 + (1/4)\langle t^2\rangle_j \mathrm{Re}(z_{CP}^2 - \Delta z^2) + r_b(1/4)\langle t^2\rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b}\langle t\rangle_j \mathrm{Re}[X_b(z_{CP} \pm \Delta z)]} \,.$$

• $r_b o$ value of the ratio for t=0 $\langle t \rangle (\langle t^2 \rangle) o$ average (squared) decay-time $X_b^{(*)} o$ the amplitude-weighted average strong-phase as measured by CLEO and BESIII [Phys. Rev. D 82, 112006, Phys. Rev. D 101, 112002] $z_{CP} \pm \Delta z \equiv (q/p)^{\pm 1}z$ with z = (-y + ix)

Useful parametrization in terms of mixing parameters:

$$x_{CP}, y_{CP}, \Delta x, \Delta y \rightarrow x, y, \phi, |q/p|$$

$$x_{CP} = -\operatorname{Im}(z_{CP}) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$

$$\Delta x = -\operatorname{Im}(\Delta z) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

$$y_{CP} = -\operatorname{Re}(z_{CP}) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$

$$\Delta y = -\operatorname{Re}(\Delta z) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

Systematic uncertainties

- Systematic uncertainties are assessed from ensembles of pseudo-experiments generated with different systematic effects. The impact on measured parameters is then evaluated.
- Reconstruction and selection effects (decay-time and m_{\pm} corr., det. efficiency) and contamination from secondary decays: mainly affect x_{CP} and y_{CP}

Source	$x_{C\!P}$	y_{CP}	Δx	Δy
Reconstruction and selection	0.199	0.757	0.009	0.044
Secondary charm decays	0.208	0.154	0.001	0.002
Detection asymmetry	0.000	0.001	0.004	0.102
Mass-fit model	0.045	0.361	0.003	0.009
Total Systematic Uncertainty	0.291	0.852	0.010	0.110
Strong phase inputs	0.23	0.66	0.02	0.04
Det. asymm. inputs	0.00	0.00	0.04	0.08
Statistical (w/o inputs)	0.40	1.00	0.18	0.35
Statistical	0.46	1.20	0.18	0.36

- Neglecting *time-dependent* detection asymmetries: mainly affects Δy
- Mis-modelling in the signal yield fits: mainly affect x_{CP}
- Approximation of constant strong-phase in each Dalitz bin: mainly affects y_{CP}
- Consistency checks: analysis repeated in subsets of the data selected based on magnet polarity, trigger, K_S category, data-taking period and D^* + meson kinematics

Future prospects

Sample (lumi \mathcal{L})	Tag	Yield	$\sigma(x)$	$\sigma(y)$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–2 (9 fb ^{-1})	SL	10M	0.07%	0.05%	0.07	4.6°
	Prompt	36M	0.05%	0.05%	0.04	1.8°
Run 1–3 (23 ${\rm fb}^{-1}$)	SL	33M	0.036%	0.030%	0.036	2.5°
	Prompt	200M	0.020%	0.020%	0.017	0.77°
Run 1–4 (50 fb ⁻¹)	SL	78M	0.024%	0.019%	0.024	1.7°
	Prompt	520M	0.012%	0.013%	0.011	0.48°
Run 1–5 (300 ${\rm fb}^{-1}$)	SL	490M	0.009%	0.008%	0.009	0.69°
	Prompt	3500M	0.005%	0.005%	0.004	0.18°

Sample (\mathcal{L})	Tag	$\sigma(A_\Gamma)$	$\sigma(A_\Gamma)$
Run $1-2 (9 \text{ fb}^{-1})$	Prompt	0.013%	0.024%
Run $1-3 (23 \text{ fb}^{-1})$	Prompt	0.0056%	0.0104~%
Run $1-4 (50 \text{ fb}^{-1})$	Prompt	0.0035%	0.0065~%
Run $1-5 (300 \text{ fb}^{-1})$	Prompt	0.0014%	0.0025~%