LHCP2021 Online, 7-12 June 2021

A. Bertolin on behalf of the LHCb collaboration

9th Edition of the Large Hadron Collider Physics Conference

Outlook:

- short introduction
- **LHCb** results:
 - Δm_s mass difference: LHCb individual measurements and LHCb combination
 - CKM γ : LHCb individual measurements and LHCb combination
 - CPV in 2-body neutral B meson (Bd/Bs) decays
 - CPV for baryons in LHCb
- take home message

CPV in the SM

CPV is one of the requirements for explaining the baryon asymmetry we observe today

in the SM the CKM matrix, V, 3 x 3, fulfilling V $V^* = I$, is describing quark charged current weak interactions ⇒ 3 angles and 1 phase (or 3 reals and 1 imaginary parameters)

$$V = \mathbf{c} \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5 \left[1 - 2(\rho + i\eta)\right] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3 \left[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)\right] & -A\lambda^2 + \frac{1}{2}A\lambda^4 \left[1 - 2(\rho + i\eta)\right] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} + \mathcal{O}\left(\lambda^6\right) & \lambda \approx \mathbf{0.22}$$

the term $\rho + i \eta$ gives the CKM phase: **only** source of CPV in the SM quark sector "intrinsic" connection between CPV in the beauty and charm sectors however the imaginary part of:

$$V_{cd} \propto \lambda^5$$

 $V_{\rm ub} \propto \lambda^3$

expect CPV suppression in charm w.r.t beauty ...

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

unitary condition relevant for beauty decays can be represented as a triangle in a complex plane, with angles α , β and γ

$$\gamma \equiv \arg \left[-\frac{V_{ud}V^*_{ub}}{V_{cd}V^*_{cb}} \right]$$
a.k.a. ϕ_3
• only CKM angle easily accessible in tree-level decays
• assuming no new physics in tree-level decays, has

- negligible theoretical uncertainty

http://ckmfitter.in2p3.fr/www/results/plots_summer19/ckm_res_summer19.html

\blacksquare LHCb \triangle m_s mass difference update

arXiv:2104.04421 LHCb-PAPER-2021-005 submitted to Nature Physics

- exploit the flavor specific nature of this decay i.e. just oscillations
- full Run 2 statistic (6 /fb), partial Run 1 (1 /fb) result already published
- signal yield for a simultaneous fit to the beauty and charm mass distributions: 378.7 k events
- Δm_s from a fit to the background subtracted decay time distribution

$$\Delta m_s = 17.7683 \pm 0.0051 \text{ (stat)} \pm 0.0032 \text{ (syst) ps}^{-1}$$

- spectacular decay time asymmetry distribution

$$A(t) = \frac{N(B_s^0 \to D_s^- \pi^+, t) - N(\overline{B}_s^0 \to D_s^- \pi^+, t)}{N(B_s^0 \to D_s^- \pi^+, t) + N(\overline{B}_s^0 \to D_s^- \pi^+, t)}$$

LHCb

 $6 \, {\rm fb}^{-1}$

(0.04 ps)

Decays ,

1000

LHCP2021 - A. Bertolin

3

\blacksquare LHCb Δm_s mass difference update (cont.)

- full Run 1+2 statistic (9 /fb)
- procedure as in the previous analysis
- signal yield: **148 k events**
- spectacular decay time asymmetry distribution

LHCb average: $17.7656 \pm 0.0057 \text{ ps}^{-1}$

lattice QCD + sum rule: $18.4^{+0.7}_{-1.2} \text{ ps}^{-1}$

JHEP 12 (2019) 009

- interesting measurement on its own
- key input for many LHCb analyses: γ in primis

\clubsuit recent LHCb results on CMK γ : a TD measurement

- replace a π with a K in the previous analysis
- CPV due to interference between mixing and decay to the same final state
- several contributing final states: amplitude analysis
- full Run 1+2 statistic (9 /fb)

model-dependent approach:
describe resonance contributions, 4, with an amplitude model
model-independent approach:
integrate over phase-space space

Parameter	Model-independent	Model-dependent
		*
r	$0.47^{+0.08+0.02}_{-0.08-0.03}$	$0.56 \pm 0.05 \pm 0.04 \pm 0.07$
κ	$0.88^{+0.12+0.04}_{-0.19-0.07}$	$0.72 \pm 0.04 \pm 0.06 \pm 0.04$
δ [°]	$-6 {}^{+ 10}_{- 12} {}^{+ 2}_{- 4}$	$-14\pm\ 10\ \pm\ 4\ \pm 5$
$\gamma - 2\beta_s$ [°]	$42 \begin{array}{ccc} +19 & +6 \\ -13 & -2 \end{array}$	$42 \pm 10 \pm 4 \pm 5$
	12 1	

- alternative amplitude models considered
- ratio of the decay amplitudes to the same final state
- coherence factor, fitted (computed) in M-i (M-d)
- strong phase difference
- weak phase difference

$$B^- \to D^0(\to K_S^0 h^+ h^-) K^- \propto V_{cb}$$

$$B^- \to \overline{D}^0(\to K_S^0 h^+ h^-) K^- \propto V_{ub}$$

$$m_{\pm}^2 = m(K_S^0, h^{\pm})$$

-8-7-6-5-4-3-2-112345678-2-112

Effective bin i

 $N_{+i}^+)/(N_{-i}^- + N_{+i}^+)$

0.6

0.4

0.2 -

-0.2

- full Run 1+2 statistic (9 /fb)
- external input: strong-phase difference between the
 D decay amplitudes at any given point of the Dalitz plot
 from CLEO and BESIII combined data
- CPV parameters from the distribution of events in the Dalitz plot: very large asymmetries in bins population
- most precise γ measurement from a single analysis

$$\gamma = (68.7^{+5.2}_{-5.1})^{\circ},$$

$$r_B^{DK^{\pm}} = 0.0904^{+0.0077}_{-0.0075},$$

$$\delta_B^{DK^{\pm}} = (118.3^{+5.5}_{-5.6})^{\circ},$$

$$r_B^{D\pi^{\pm}} = 0.0050 \pm 0.0017,$$

$$\delta_B^{D\pi^{\pm}} = (291^{+24}_{-26})^{\circ}.$$

no CPV expectation

$$B^- \to D^0 (\to K^+ \pi^-) K^- \propto V_{cb}$$

 $B^- \to \overline{D}^0 (\to K^+ \pi^-) K^- \propto V_{ub}$

- full Run 1+2 statistic (9 /fb)
- partial decay rates are related to the underlying physical parameters
- spectacular differences in peaks height
- 9 CP observables related to fully reconstructed decays
- 19 CP observables related to partially reconstructed decays (missing neutral particle)

Observable	Definition
A_K^{CP}	$\frac{\Gamma(B^- \to [h^+ h^-]_D K^-) \ - \ \Gamma(B^+ \to [h^+ h^-]_D K^+)}{\Gamma(B^- \to [h^+ h^-]_D K^-) \ + \ \Gamma(B^+ \to [h^+ h^-]_D K^+)}$
A_{π}^{CP}	$\frac{\Gamma(B^- \to [h^+ h^-]_D \pi^-) - \Gamma(B^+ \to [h^+ h^-]_D \pi^+)}{\Gamma(B^- \to [h^+ h^-]_D \pi^-) + \Gamma(B^+ \to [h^+ h^-]_D \pi^+)}$
$A_K^{K\pi}$	$\frac{\Gamma(B^- \! \to \! [K^- \pi^+]_D K^-) \ - \ \Gamma(B^+ \! \to \! [K^+ \pi^-]_D K^+)}{\Gamma(B^- \! \to \! [K^- \pi^+]_D K^-) \ + \ \Gamma(B^+ \! \to \! [K^+ \pi^-]_D K^+)}$

JHEP04(2021)081

- measurements on partially reconstructed decays are the first of their kind
- all CP observables are measured with world-best precision
- two-fold ambiguity solved combining results with the previous analysis

$$\gamma = (68.7^{+5.2}_{-5.1})^o \rightarrow (61.8 \pm 4.0)^o$$

4 LHCb CMK γ combination

LHCb input data:

D decay	Method	Ref.	Dataset	Status since
				Ref. [3]
$D \rightarrow h^+ h^-$	GLW/ADS	[16]	Run 1+2	Updated
$D \rightarrow h^+\pi^-\pi^+\pi^-$	GLW/ADS	[24]	Run 1	As before
$D ightarrow h^+ h^- \pi^0$	GLW/ADS	[25]	Run 1	As before
$D o K_{ m S}^0 h^+ h^-$	BPGGSZ	17	Run 1+2	$_{ m Updated}$
$D o K_{\mathrm{S}}^0 K^{\pm} \pi^{\mp}$	GLS	[20]	Run $1+2$	$\mathbf{Updated}$
$D \rightarrow h^+ h^-$	GLW/ADS	[16]	Run $1+2$	$\mathbf{Updated}$
$D o h^+ h^-$	GLW/ADS	[26]	Run $1+2(*)$	As before
$D \rightarrow h^+\pi^-\pi^+\pi^-$	GLW/ADS	[26]	Run $1+2(*)$	As before
$D \rightarrow h^+ h^-$	GLW/ADS	[27]	Run 1	As before
$D o h^+ h^-$	GLW/ADS	[21]	Run $1+2(*)$	$\mathbf{Updated}$
$D \to h^+\pi^-\pi^+\pi^-$	GLW/ADS	[21]	Run $1+2(*)$	New
$D \rightarrow h^+ h^-$	GLW-Dalitz	[22]	Run 1	Superseded
$D o K_{\mathrm{S}}^0 \pi^+ \pi^-$	BPGGSZ	[28]	Run 1	As before
$D^\pm\!\to K^\mp\pi^\pm\pi^\pm$	TD	[29]	Run 1	As before
$D_s^\pm\!\to h^\pm h^\mp \pi^\pm$	TD	[30]	Run 1	As before
$D_s^{\pm} \rightarrow h^{\pm} h^{\mp} \pi^{\pm}$	${ m TD}$	[23]	Run 1+2	New
	$D \rightarrow h^{+}h^{-}$ $D \rightarrow h^{+}h^{-}\pi^{+}\pi^{-}$ $D \rightarrow h^{+}h^{-}\pi^{0}$ $D \rightarrow K_{S}^{0}h^{+}h^{-}$ $D \rightarrow K_{S}^{0}K^{\pm}\pi^{\mp}$ $D \rightarrow h^{+}h^{-}$ $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ $D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}$ $D_{s}^{\pm} \rightarrow h^{\pm}h^{\mp}\pi^{\pm}$	$D \rightarrow h^{+}h^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}h^{-}\pi^{0} \qquad \text{GLW/ADS}$ $D \rightarrow K_{S}^{0}h^{+}h^{-} \qquad \text{BPGGSZ}$ $D \rightarrow K_{S}^{0}K^{\pm}\pi^{\mp} \qquad \text{GLS}$ $D \rightarrow h^{+}h^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}h^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}h^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}h^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}h^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}\pi^{-}\pi^{+}\pi^{-} \qquad \text{GLW/ADS}$ $D \rightarrow h^{+}h^{-} \qquad \text{GLW-Dalitz}$ $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-} \qquad \text{BPGGSZ}$ $D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm} \qquad \text{TD}$ $D_{s}^{\pm} \rightarrow h^{\pm}h^{\mp}\pi^{\pm} \qquad \text{TD}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

auxiliary inputs:

Decay	Parameters	Source	Ref.
$D^0-\overline{D}^0$ -mixing	x_D, y_D	HLFAV	[29]
$D \to K^+\pi^-$	$r_D^{K\pi},\delta_D^{K\pi}$	HLFAV	[29]
$D \to h^+ h^-$	$A_{C\!P}^{ m dir}(KK),A_{C\!P}^{ m dir}(\pi\pi)$	HLFAV	[29]
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$\delta_D^{K3\pi},\kappa_D^{K3\pi},r_D^{K3\pi}$	CLEO+LHCb	[30]
$D\to\pi^+\pi^-\pi^+\pi^-$	$F_{\pi\pi\pi\pi}$	CLEO	[31]
$D \to K \pi \pi^0$	$\delta_D^{K2\pi},\kappa_D^{K2\pi},r_D^{K2\pi}$	CLEO+LHCb	[30]
$D \to h^+ h^- \pi^0$	$F_{\pi\pi\pi^0}, F_{KK\pi^0}$	CLEO	[31]
$D \to K_{\rm s}^0 K^+ \pi^-$	$\delta_D^{K_SK\pi},\kappa_D^{K_SK\pi},r_D^{K_SK\pi}$	CLEO	[32]
$D \to K_{\rm s}^0 K^+ \pi^-$	$r_D^{K_SK\pi}$	LHCb	[33]
$B^0 \to DK^{*0}$	$\kappa_B^{DK^{*0}}, \bar{R}_B^{DK^{*0}}, \bar{\Delta}_B^{DK^{*0}}$	LHCb	[23]
$B^+ \to DK^{*+}$	$\kappa_B^{DK^{*+}}$	LHCb	[20]
$B_s^0 \to D_s^\mp K^\pm$	ϕ_s	HFLAV	[29]
$B^0\!\to D^\mp\pi^\pm$	β	HFLAV	[29]
$B^0 \to D^\mp \pi^\pm$	$r_B^{D^\mp\pi^\pm}$	See text	[26]

- whenever possible from experiment
- often from LHCb

- complementarity between the different results
- most of the sensitivity from B[±]
- LHCb unique sensitivity from B⁰_s

$$\gamma = (67 \pm 4)^o$$

\clubsuit CMK γ : from trees vs global fits

- any disagreement between tree-level determinations and the value inferred from global CKM fits would indicate physics beyond the SM due for example to new particles / mediators being exchanged in loops
- LHCb is nicely closing the sensitivity gap between direct measurements and global fits
- much more to come from LHCb:
 - extend already used channels to full Run 1 + 2 data
 - add new channels
- no show stopper on γ accuracy from the experimental side (importance of BESIII data)
- outstanding experimental task but LHCb will reach accuracies < 1 deg. already with 50 /fb

JHEP03(2021)075

♣ CPV from 2-body neutral B meson (Bd/Bs) decays

CPV from the interference between decay (to the same final state) and mixing

$$A_{CP}(t) = \frac{\Gamma_{\overline{B}_{(s)}^0 \to f}(t) - \Gamma_{B_{(s)}^0 \to f}(t)}{\Gamma_{\overline{B}_{(s)}^0 \to f}(t) + \Gamma_{B_{(s)}^0 \to f}(t)} = \frac{-C_f \cos(\Delta m_{d(s)}t) + S_f \sin(\Delta m_{d(s)}t)}{\cosh(\frac{\Delta \Gamma_{d(s)}}{2}t) + A_f^{\Delta \Gamma} \sinh(\frac{\Delta \Gamma_{d(s)}}{2}t)}$$

- 1.9 /fb (2015-2016)
- simultaneous fit to invariant mass, decay time, tagging decision, mistag probabilities distributions for K $\pi\pi$ and KK samples

♣ CPV from 2-body neutral B meson (Bd/Bs) decays (cont.)

$$C_{\pi\pi} = -0.311 \pm 0.045,$$
 $S_{\pi\pi} = -0.706 \pm 0.042,$
 $A_{CP}^{B^0} = -0.0824 \pm 0.0033,$
 $A_{CP}^{B_s^0} = 0.236 \pm 0.013,$
 $C_{KK} = 0.164 \pm 0.034,$
 $S_{KK} = 0.123 \pm 0.034,$
 $A_{KK}^{\Delta\Gamma} = -0.833 \pm 0.054,$

- new results are in agreement with previous LHCb Run 1 measurements
- good agreement with BaBar / Belle (where applicable)
- most precise results from a single experiment to date
- the KK mixing parameters are differing from 0 0 -1 by 6.5 standard deviations
- \Rightarrow first observation of time-dependent CP violation in decays of the ${\rm B^0_s}$ meson

Parameter	Value			
Δm_d	$0.5065 \pm 0.0019 \mathrm{ps^{-1}}$			
Γ_d sited	$0.6579 \pm 0.0017 \mathrm{ps^{-1}}$			
$\Delta\Gamma_d$	$0 \mathrm{ps}^{-1}$			
Δm_s	$17.757 \pm 0.021 \mathrm{ps^{-1}}$			
Γ_s	$0.6562 \pm 0.0021 \mathrm{ps^{-1}}$			
$\Delta\Gamma_s$	$0.082 \pm 0.005 \mathrm{ps}^{-1}$			
$ \rho(\Gamma_s, \Delta\Gamma_s) $	-0.170			

5.6 5.8

 $m(K^{\pm}\pi^{\mp})$ [GeV/ c^2]

4000 LHCb
$$5.4 \text{ fb}^{-1}$$

Data Signal ... Combinatorial ... Partial Reco. Peaking Partial Reco. $B^+ \to \pi^+\pi^0$

4500 5000 5500 6000 $m(K^-\pi^0)$ [MeV/ c^2]

$$B^+ \to K^+ \pi^0$$
 JHEP 03 (2021) 075

$$A_{CP} = \frac{\Gamma(B^- \to K^- \pi^0) - \Gamma(B^+ \to K^+ \pi^0)}{\Gamma(B^- \to K^- \pi^0) + \Gamma(B^+ \to K^+ \pi^0)}$$

- 5.4 /fb
- first analysis of a one-track decay at a hadron collider

$$A_{CP}(B^+ \to K^+\pi^0) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003$$
 stat., syst., ext. inputs

 exceeding the precision of the current world average (HFLAV)

$$A_{CP}^{B^0} = -0.0831 \pm 0.0034$$

- average of Phys. Rev. D 98 (2018) 032004 (3 /fb, Run 1) and JHEP 03 (2021) 075 (1.9 /fb, 2016-2016)

$$\Delta A_{CP}(K\pi) \equiv A_{CP}(B^+ \to K^+\pi^0) - A_{CP}(B^0 \to K^+\pi^-)$$

- is nonzero with a significance of more than 8 standard deviations (using the HFLAV averages updated with the above LHCb results) \Rightarrow isospin symmetry breaking
- accuracy substantially enhanced wrt previous measurement

$B \rightarrow K \pi puzzle$

♣ CPV from baryons decays

$$arepsilon_b^-
ightarrow p K^- K^-$$

 $\Sigma(1915)$

$$A_i^{CP} = \frac{\int_{\Omega} (d\Gamma_i^+/d\Omega - d\Gamma_i^-/d\Omega) d\Omega}{\int_{\Omega} (d\Gamma_i^+/d\Omega + d\Gamma_i^-/d\Omega) d\Omega}$$

$\Lambda^{CP} = J_{\Delta}$	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<i>t</i> /	/
$A_i - \overline{\int_{\Omega}}$	$\frac{1}{2}(d\Gamma_i^+/d\Omega)$	$2 + d\Gamma_i^-/d$	$\Omega)d\Omega$
Compone	ent	$A^{CP} (10^{-}$	2)
$\Sigma(1385)$	$-27 \pm$	$\pm 34 \text{ (stat)} \pm$	73 (syst)
$\Lambda(1405)$	$-1\pm$	24 (stat) ±	32 (syst)
$\Lambda(1520)$	$-5\pm$	$9 \text{ (stat)} \pm$	8 (syst)
$\Lambda(1670)$	$3\pm$: 14 (stat) ±	:10 (syst)
$\Sigma(1775)$	$-47 \pm$	$=26 \text{ (stat)} \pm$:14 (syst)

 $11 \pm 26 \text{ (stat)} \pm 22 \text{ (syst)}$

- Run 1 + partial Run 2 statistic (5 /fb overall)
- amplitude analysis: several, 6, contributing resonances
- CP asymmetry for each
- results consistent with 0, expect a large boost in stat. from Run 3 data

arXiv:2104.15074

take home message

LHCb has performed outstanding measurements in beauty:

- Δm_s
- CKM γ
- CPV in 2-body neutral B meson (Bd/Bs) decays
- hunting CPV in the baryon sector often:
- different and/or complementary decay channels
- different and/or complementary analysis techniques
- word best precision

- given the LHC / LHCb upcoming upgrade era this was just an ... appetizer
- expected to boost statistics far beyond 9 /fb on a relatively short time scale
- looking forward to contributions from Belle II

2028	2029	2030	2031	2032	2033	2034
FMAMJJASOND	J F M A M J J A S O N C	JFMAMJJASOND	J F M A M J J A S O N D	J FMAM J J A S ON D	J FMAMJ J ASOND	JFMAMJJASOND
	Run 4	50 /fb	LS4		Run 5	300 /fb

http://ckmfitter.in2p3.fr/www/results/plots_summer19/ckm_res_summer19.html

same plot after phase I: LHCb at 23 /fb, CMS/ATLAS at 300 /fb and Belle II at 50 /ab

http://ckmfitter.in2p3.fr/www/studies/plots_hllhc18/phase1/ckm_plots_hllhc18_phase1.html

Thank you for your attention ?

advertisement: **CPV and semileptonic in b-hadrons**, plenary session tomorrow , by my colleague Khanji Basem

backups

LHCb: the detector and its performance so far single-arm forward spectrometer at the LHC

- detector paper:
- JINST 3 (2008) S08005
- Run 1 performance:

Int. J. Mod. Phys. A30 (2015) 1530022

- Run 2 performance:
- JINST 14 (2019) P04013

optimized for beauty and charm physics at $2 < \eta < 5$

key points:

- momentum resolution $(\sigma(p)/p \approx 0.5 \%$ (low momentum) to 1 % @ 200 GeV/c)
- impact parameter resolution $(\sigma(IP) \approx 15 \mu m \text{ at high } p_T)$
- primary and secondary vertices reco.
- decay time resolution ($\sigma(t) \approx 50 \text{ fs}$)
- 'global' PID: e / μ / π / K (K id \approx 95 % π mis-id \approx 5 %, p < 100 GeV/c)
- γ and π^0 reconstruction

recorded lumi.:

2011→ 2012 (Run 1): 3.19 /fb $^{\sim}$ 3 10 11 b anti-b pairs prod. 2015 → 2018 (Run 2): 5.9 /fb $^{\sim}$ 2 x 6 10 11 b anti-b pairs prod.

Figure 1. Leading-order Feynman diagrams for (left) B_s^0 and (right) \overline{B}_s^0 decays to the $D_s^-K^+\pi^+\pi^-$ final state, where the $\pi^+\pi^-$ subsystem exemplarily hadronises in conjunction with the kaon.

$$\frac{\mathrm{d}\Gamma(B_s^0 \to f)}{\mathrm{d}t} \propto \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + C_f \cos\left(\Delta m_s t\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) - S_f \sin\left(\Delta m_s t\right) \right] e^{-\Gamma_s t},$$

$$\frac{\mathrm{d}\Gamma(\overline{B}_s^0 \to f)}{\mathrm{d}t} \propto \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - C_f \cos\left(\Delta m_s t\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) + S_f \sin\left(\Delta m_s t\right) \right] e^{-\Gamma_s t}.$$

$$\begin{split} C_f &= \frac{1-r^2}{1+r^2}, \\ A_f^{\Delta\Gamma} &= -\frac{2\,r\,\kappa\cos\left(\delta-\left(\gamma-2\beta_s\right)\right)}{1+r^2}, \qquad A_{\bar{f}}^{\Delta\Gamma} = -\frac{2\,r\,\kappa\cos\left(\delta+\left(\gamma-2\beta_s\right)\right)}{1+r^2}, \\ S_f &= +\frac{2\,r\,\kappa\sin\left(\delta-\left(\gamma-2\beta_s\right)\right)}{1+r^2}, \qquad S_{\bar{f}} &= -\frac{2\,r\,\kappa\sin\left(\delta+\left(\gamma-2\beta_s\right)\right)}{1+r^2}. \end{split}$$