# Top production and decay

9th Edition of the Large Hadron Collider Physics Conference

Sven Menke, MPP München on behalf of the ATLAS, CMS & LHCb collaborations

## Introduction

• Top quark production at the LHC

## Cross sections

- Pair production of top quarks
- Single top quark production

## Top quark properties and tests in top quark decays

- Lepton universality
- W boson helicity
- Test of  $\mathcal{CP}$  violation
- b fragmentation
- Top quark polarisation
- Top quark mass

## Conclusions









## Kinematics at the LHC **b** tt production



Measuring top-quark production at different  $\sqrt{s}$  allows to vary the production mechanism (more gluons at higher  $\sqrt{s}$ )

 $\blacktriangleright$  There is even a small dataset at  $\sqrt{s} = 5.02 \,\text{TeV}$  where  $t\bar{t}$  production has been measured  $\blacktriangleright$  with  $\sim 2.3 \times$  higher quark-pair fraction compared to 13 TeV

S. Menke, MPP München

LHCP2021, 8 June 2021, Zoom

Q vs.  $x_{1,2}$  for the LHC at 7, 8, and 13 TeV (left)

Red curve shows top-pair production as example

QCD measurements constrain  $\alpha_s$  and PDF's - here CTEQ 6.6 (right)

## **Cross sections** Pair production of top quarks

## $\blacktriangleright$ The Di-Lepton channel provides the cleanest sample of tt events



 $p_{\perp}$  of the sub-leading lepton

### ATLAS-CONF-2021-003



Number of b-tagged jets

S. Menke, MPP München

Measurements of  $\sigma_{t\bar{t}}$  have been done at 7, 8 and 13 TeV in this channel but most recently the small  $\sqrt{s} = 5.02$  TeV pp datasets have been analysed as well by CMS and ATLAS

## Event selection for $\sigma_{t\bar{t}}$ @5.02 TeV

- Exactly two central, isolated and oppositely charged leptons
- Corresponding same-flavour lepton samples used to estimate background
- Keep events with exactly 1 or 2 b-tagged jets (ATLAS) or at least 2 jets (with or without b-tag) (CMS)



### ATLAS-CONF-2021-003

 $m_{\mu\mu}$  for Z + jet bkgd scale for 1 (2) b-tag(s)

Top production and decay

### LHCP2021, 8 June 2021, Zoom







## **Cross sections** > Pair production of top quarks

Counting experiment by CMS in  $e^{\pm}\mu^{\mp}$ -channel

- integrated luminosity:  $L = 304 \text{ pb}^{-1}$
- $\sim \sigma_{t\bar{t}}(5.02 \text{ TeV})^{CMS} = 60.3 \pm 5.0_{stat} \pm 2.8_{syst} \pm 0.9_{lumi} \text{ pb} = 60.3 \pm 5.5_{tot} \text{ pb}$ 
  - open square in plot: 2017  $e\mu$ -result
  - open circle: 2015 result (lepton+jets and di-lepton)
  - closed circle: combination 2015 and 2017



 $\sigma_{
m t\bar{t}}$  VS.  $\sqrt{s}$ 

ATLAS-CONF-2021-003



Fit of  $\sigma_{t\bar{t}}$  to number of e $\mu$ , ee and  $\mu\mu$  events with exactly 1 or 2 b-tagged jets in ATLAS

- 6  $m_{\ell \ell} m_7$  bins to deplete/enhance background
- integrated luminosity:  $L = 257 \text{ pb}^{-1}$

 $\sigma_{t\bar{t}}(5.02 \text{ TeV})^{\text{ATLAS}} = 66.0 \pm 4.5_{\text{stat}} \pm 1.6_{\text{syst}} \pm 1.2_{\text{lumi}} \pm 0.2_{\text{beam}} \text{ pb} = 0.2_{\text{beam}} \text{ pb$  $66.0\pm4.9_{tot}\,\text{pb}$ 

Agreement with all predictions; CMS best described with ABMP16; ATLAS with NNPDF2.3

### S. Menke, MPP München

### Top production and decay

### LHCP2021, 8 June 2021, Zoom

## **Cross sections** $\blacktriangleright$ Summary of inclusive $\sigma_{t\bar{t}}$ measurements

- Tevatron result for pp collisions @ 1.96 TeV) from May 2021 (below)



### S. Menke, MPP München

Top production and decay

### LHCP2021, 8 June 2021, Zoom

### ATL-PHYS-PUB-2021-014

## Differential cross sections - Pair production of top quarks

- The Lepton+Jets offers best compromise between precision and statistics
- Differential and double-differential cross sections in full kinematic range @13 TeV by CMS
  - exactly 1 central, isolated e or  $\mu$
- 4 event categories based of number of tight (loose) b-tags and resolved or boosted top-quark candidates:
  - 2t: 2 resolved top-candidates with 2 tightly b-tagged jets
  - 1t11: 2 resolved top-candidates with 1 tight and 1 loose b-tag
  - BHRL: boosted hadronic top ( $p_{\perp} > 400 \text{ GeV}$ ) but resolved leptonic top, 1 tight b-taq
  - BHBL: both top-candidates boosted, 1 loose b-tag on leptonic side

Kinematic quantities on parton-level for individual top-quarks:  $\blacktriangleright p_{\perp}(t_h), p_{\perp}(t_{\ell}), |y(t_h)|$ and top-pairs:  $\blacktriangleright$  | $y(t\bar{t})$ |,  $m(t\bar{t})$ ,  $p_{\perp}(t\bar{t})$ 



LHCP2021, 8 June 2021, Zoom



### CMS-PAS-TOP-20-001

## **Differential cross sections > Pair production of top quarks**

- Unfolding background-subtracted distributions to parton- and particle-level for single- and double-differential cross-section measurements
  - 1D: the 6 kinematic quantities from prev. slide and  $p_{\perp}(t_{high}), p_{\perp}(t_{low}),$  $S_{\perp} = p_{\perp}(t_{h}) + p_{\perp}(t_{\ell}), \Delta |y_{t/\bar{t}}|, |\Delta y_{t/\bar{t}}|, \Delta \phi_{t/\bar{t}} \text{ and } \overline{\cos(\theta^{*})}$
  - 2D: several combinations of the 1D observables:
    - ►  $m(t\bar{t})$  vs.  $p_{\perp}(t_h)$ ,  $|y(t_h)|$ ,  $\cos(\theta^*)$ ,  $|y(t\bar{t})|$ ,  $\Delta|y_{t/\bar{t}}|$  and  $|\Delta y_{t/\bar{t}}|$
    - $\triangleright p_{\perp}(t_{h})$  vs.  $|y(t_{h})|$  and  $p_{\perp}(t\overline{t})$
    - ►  $|y_{+}(t)|$  vs.  $|y(\bar{t})|$

## Comparison to QCD predictions:

- POWHEG+PYTHIA, POWHEG+HERWIG, MG5aMC@NLO+PYTHIA NLO simulations on parton- and particle-level with parton-showering
- and to NNLO MATRIX-calculations on parton-level











 $1/\sigma_{
m norm}\,{
m d}\,\sigma_{
m tar t}/{
m d}\,p_{\perp}\,(
m tar t)$  $1/\sigma_{\text{norm}} d^2 \sigma_{t\bar{t}}/d |y(t_h)| d p_{\perp}(t_h)$  in high  $p_{\perp}(t_h)$ -bin  $1/\sigma_{\text{norm}} d \sigma_{t\bar{t}}/d \cos(\theta^*)$ Predictions too hard in  $p_{\perp}(t)$ , o.k. in y, too peaked in  $m(t\bar{t})$ , deviate at high  $p_{\perp}$ , |y|, MATRIX best

S. Menke, MPP München

Top production and decay

LHCP2021, 8 June 2021, Zoom

# CMS-PAS-TOP-20-001

 $1/\sigma_{\rm norm} \, d \, \sigma_{\rm t\bar{t}} / d \, m(\rm t\bar{t})$ 

 $1/\sigma_{
m norm} \, {
m d} \, \sigma_{
m tar t} / {
m d} \, |y(
m tar t)|$ 

## Differential cross sections - Pair production of top quarks



- The full-hadronic channel provides a fully reconstructed final state of  $t\bar{t}$  events but suffers from large QCD multijet background
- Single- and double-differential cross sections in the full hadronic channel @13 TeV by ATLAS
  - 6 central jets with  $p_{\perp} > 55$  GeV, no leptons
  - 0 or more additional central jets with  $p_{\perp}\,>\,25\,{
    m GeV}$
  - exactly 2 b-tagged jets
  - $\chi^2$ -discriminant to form 2 all-hadronic top-candidates, based on  $m_W$  and  $\Delta(m_{jjj_1}, m_{jjj_2})$  (but not on  $m_t$ )
  - $N_{\rm b}$ -tags and mass-window around  $m_{\rm t}$  to define signal region (D) and background/control regions for data-driven background estimate (ABCD-method)
- Signal region D:
  - 2 b-tags, large separation of b, top-mass window





### S. Menke, MPP München

### Top production and decay

### LHCP2021, 8 June 2021, Zoom

 $\Delta R_{\rm bb}$ 

### JHEP01(2021)033

 $\Delta R_{\rm bW}^{\rm max}$ 

## **Differential cross sections > Pair production of top quarks**

- Unfolding to particle- and parton-level in 1D and 2D kinematic quantities of t and tt systems – and angular distances to additional jet-activity (recoiling against the tt-system)
- Comparison to QCD predictions:
  - POWHEG interfaced with PYTHIA or HERWIG MG5aMC@NLO+PYTHIA and SHERPA NLO simulations on parton- and particle-level with parton-showering
- similar observation as in lepton+jets channel:
  - ► too hard  $p_{\perp}$  by all predictions, bump in  $m(t\bar{t})$
- POWHEG+HERWIG describes data best, closely followed by POWHEG+PYTHIA, MG5aMC@NLO+PYTHIA most discrepant



- ISR is dominant source for leading jet
- contribution at  $\Delta R \simeq \pi$  when leading jet stems from top-decay:
  - underestimated by most predictions
- 2D distributions of top and top-pair kinematics in slices of jet-multiplicity poorly modelled by all generators









### $1/\sigma_{t\bar{t}} d \sigma_{t\bar{t}}/d m(t\bar{t})$

### S. Menke, MPP München

### Top production and decay

### LHCP2021, 8 June 2021, Zoom

### JHEP01(2021)033



### $1/\sigma_{\mathrm{t}\overline{\mathrm{t}}}\,\mathrm{d}\,\sigma_{\mathrm{t}\overline{\mathrm{t}}}/\mathrm{d}\,p_{\perp}\,(\mathrm{t}\overline{\mathrm{t}})$

## $1/\sigma_{t\bar{t}} \,\mathrm{d}\,\sigma_{t\bar{t}}/\mathrm{d}\,\Delta\phi_{t\bar{t}}$

## Cross sections Single top quark production

- Total cross section for single top production surprisingly large  $\simeq 44(36)$  % of  $\sigma_{t\bar{t}}$  @8(13) TeV NLO single-top / NNLO+NNLL t $\bar{t}$  predictions
  - Calculations by LHCTopWG with Top++, arXiv:1112.5675 for tt and Hathor v2.1, arXiv:1007.1327, arXiv:1406.4403 for single-top





S. Menke, MPP München





## Cross sections Single top quark production

## Measurement @8 TeV of $\sigma_{Wt}$ with single lepton+jets final state by ATLAS

- exactly one central  $\mu$  or e matching trigger
- missing transverse momentum  $E_{\perp}^{\text{miss}} > 30 \,\text{GeV}$
- transverse mass of the leptonic  $W_{\ell}$ ,  $m_{\perp}$  ( $W_{\ell}$ ) > 50 GeV
- 3 central jets, one of them b-tagged forms the signal region (3j1b)
  - ▶ about 5% tW events; 58% tt
- 4 jets with 2 b-tags (4j2b):
  - very pure tt-dominated background validation region



pre-fit  $m(W_h)$ 



## use NN to discriminate signal from background

- NN input: optimised set of 4 kinematic variables of subset of selected objects (but not  $m(W_h)$ )
- Likelihood fit to 2D discriminant of  $m(W_h)$  and NN output:  $ightarrow \sigma_{Wt}(8 \text{ TeV})^{ATLAS} = 26 \pm 7_{tot} \text{ pb}$ 
  - Systematic uncertainty dominated by amount of QCD radiation in signal and background events, jet energy scale and b-tagging
- Comparison of all other single top-quark cross sections (left)

 $\sigma_{\rm EWt}, \sigma_{\rm Wt}, \sigma_{\rm EWs}$  VS.  $\sqrt{s}$ 

### Top production and decay

### LHCP2021, 8 June 2021, Zoom

### arXiv:2007.01554

### NN output in the signal region



## Cross sections Single top quark production

## Measurement of $\sigma_{Wt}$ @13 TeV in the semi-leptonic channel by CMS

- exactly one central, isolated  $\mu$  or e matching trigger
- 2-4 central jets exactly one of them b-tagged
- signal region (SR) is defined by 3 jets (3j)
  - $\blacktriangleright$  purity is  $\simeq 6\%$
- control regions (CR) for 2 jets (2j)
  - enhances W + jets and multi-jet background
- and 4 jets (4i)
  - enhances tt background

## Data-driven estimate of multi-jet background by inverting lepton isolation



BDT output: 2 jet CR,  $\mu$  channel

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOPSummaryFigures



 $\sigma_{\sf EWt}, \sigma_{\sf Wt}, \sigma_{\sf EWs}, \sigma_{\sf Zt}, \sigma_{\gamma t}$  vs.  $\sqrt{s}$ 

S. Menke, MPP München

### BDT to discriminate signal from background

- inputs to BDT are 8 kinematic variables based on the selected objects including  $m(W_h)$
- Binned likelihood fit on BDT discriminants:  $\sigma_{Wt}(13 \text{ TeV})^{CMS} = 89 \pm 4_{stat} \pm 12_{syst} \text{ pb}$ 
  - systematic uncertainties in multi-jet and W + jets background normalisation, jet energy scale and  $t\bar{t}$ modelling dominate

Comparison of all other single top-quark cross sections (left)

### LHCP2021, 8 June 2021, Zoom



### BDT output: 3 jet SR, $\mu$ channel



## Properties and decays Tests of lepton universality

## Measurement of $R(\tau/\mu) = B(W \rightarrow \tau \nu_{\tau})/B(W \rightarrow \mu \nu_{\mu})$ in tt in the di-lepton channel @13 TeV by ATLAS

### "Tag and probe" approach on di-lepton $t\bar{t}$ events: 0.01 m ATLAS Data 0.01 $10^{6}$ 10<sup>6</sup> $\sqrt{s} = 13 \text{ TeV}$ . 139 fb<sup>-1</sup> Prompt µ (top) one lepton serves as "tag" Signal Region $\tau \rightarrow \mu$ (top) Signal Region ts / Events / 10<sup>5</sup> e–μ, 20<p<sup>μ</sup><250 GeV u (hadron decay) the $\mu$ serves as "probe" to count un-biased Шve Post-Fit $Z \rightarrow \tau \tau$ Post-Fit $10^{4}$ $10^{4}$ Other SM processes $\blacktriangleright$ the number of prompt W $\rightarrow \mu \nu_{\mu}$ decays and Uncertainty $10^{3}$ $10^{3}$ $\blacktriangleright$ those with an intermediate $\tau: W \to \tau \nu_{\tau} \to \mu \nu_{\mu} \nu_{\tau}$ $10^{2}$ 10 • isolated, central $\mu$ or e for "tag" Data / • isolated, $p_\perp > 5~{ m GeV}~\mu$ for "probe" 0.45 0.5 0.05 0.1 0.15 at least two central b-tagged jets |d<sup>μ</sup>| [mm • $e\mu$ and $\mu\mu$ events with Z-mass veto $|d_0^{\mu}|$ in e $\mu$ -channel $\triangleright$ Z $\rightarrow \mu\mu$ calibration sample for transverse impact ATLAS ATLAS 50000 √s = 13 TeV, 139 fb $\Box Z \rightarrow \mu\mu$ parameter $|d_0^{\mu}|$ (defined w.r.t. beam-line) Z Normalisation Selec Diboson processes $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 40000 Post-Fit Other SM processes Uncertaint • 2 $\mu$ with same requirements as above but 30000 Z-mass veto reversed 20000 wider mass-range for control sample to normalise Z-peak 10000 • no requirement on jets 0.98

Likelihood fit to templates of  $|d_0^{\mu}|$  from prompt (Z  $\rightarrow \mu\mu$ ) and non-prompt ( $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$  from t  $\rightarrow$  Wb) muons and fakes

LHCP2021, 8 June 2021, Zoom

 $m_{\mu\mu}$  in Z  $\rightarrow \mu\mu$  CR

### S. Menke, MPP München

Event selection

### Top production and decay

### arXiv:2007.14040, accepted by Nature



ATLAS - this result Statistical Uncertainty Systematic Uncertainty — Total Uncertainty 1.04 1.06 1.02 1.08  $\mathsf{R}(\tau/\mu) = B(W \rightarrow \tau \nu)/B(W \rightarrow \mu \nu)$  $R(\tau / \nu)$  $R(\tau/\mu) = 0.992 \pm 0.007_{\text{stat}} \pm 0.011_{\text{syst}}$ 

## **Properties and decays** W helicity

- In the SM the t-decay is almost always  $t \rightarrow W^+b$  via a V A current interaction
- Deviations from expected V A behaviour indicate new physics
- In general for any combination of V and A:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{4} F_0 (1 - \cos^2\theta^*) + \frac{3}{8} F_L (1 - \cos\theta^*)^2 + \frac{3}{8} F_R (1 + \cos\theta^*)^2$$
$$F_0 + F_L + F_R = 1, F_0 \simeq \frac{m_t^2}{2m_W^2 + m_t^2 + m_b^2} \simeq 0.7, F_R^{SM} = 0$$



- $\dot{}$  is the polar angle in the W rest frame between the W<sup>+(-)</sup> momentum direction and the  $\ell^{+(-)}$  or  $\overline{q}(q)$
- Combination of 3 measurements of  $\cos \theta^*$ -distributions in t t lepton+jets events by ATLAS and CMS and 1 such measurement in single t events by CMS, all @8 TeV
  - improving experimental precision ( $\simeq 3 5\%$  each, compared to  $\simeq 2\%$  from theory) motivates the combination of CMS' and ATLAS' results



Correlations

### S. Menke, MPP München

### Top production and decay

### LHCP2021, 8 June 2021, Zoom

Evaluation of correlations between measurements

- $F_0$  and  $F_1$  typically highly anti-correlated (by unitarity constraint and since  $F_R \simeq 0$ ) within one measurement
- (anti-) correlations between different t  $\bar{t}$  measurements around 30 40% in magnitude
- CMS single-top measurement correlations to tt CMS measurements around 20% in magnitude, smaller to ATLAS



É

F



## **Properties and decays** W helicity



### Individual and combined results



## **Combined result**

- $F_0 = 0.693 \pm 0.009_{\text{stat+bkg}} \pm 0.011_{\text{syst}} (\pm 2.0\%_{\text{tot}})$
- with total correlation of  $\rho = -85\%$
- from unitarity constraint:
  - $ightarrow F_{
    m R} = -0.008 \pm 0.005_{
    m stat+bkg} \pm 0.006_{
    m syst}$

## **Dominant uncertainties**

- radiation and scales modelling
- simulation sample size and choice

## Limits on anomalous couplings

- SM:  $V_{\rm I} \simeq 1$ , all others zero

### LHCP2021, 8 June 2021, Zoom

### Top production and decay

### S. Menke, MPP München

•  $F_{\rm L} = 0.315 \pm 0.006_{\rm stat+bkg} \pm 0.009_{\rm syst} \ (\pm 3.5\%_{\rm tot})$ 

statistical uncertainties for data and background estimates

• allow for (BSM) non-zero right-handed vector couplings ( $V_{\rm R}$ ) and left- and right-handed tensor couplings ( $g_{\rm L}$  and  $g_{\rm R}$ )

 plots show allowed 68% and 95% CL contours around CMS (+), ATLAS  $(\times)$  and combined (\*) results, compared to SM



## **Properties and decays** $\blacktriangleright$ **Test of** CP**-violation in top production**

- Test of CP-violation in di-leptonic t events @ 13 TeV by CMS
- Construct 2 CP-odd scalars from 4-vectors of reconstructed t and  $\overline{t}$ , b and  $\overline{b}$  and  $\ell^+$ ,  $\ell^-$ 
  - $\mathcal{O}_1 = \varepsilon(p(t), p(\bar{t}), p(\ell^+), p(\ell^-))$
  - $\mathcal{O}_3 = \varepsilon(p(\mathbf{b}), p(\overline{\mathbf{b}}), p(\ell^+), p(\ell^-))$
- Count events with positive and negative  $\mathcal{O}_i$ 
  - $A_i = \frac{N(\mathcal{O}_i > 0) N(\mathcal{O}_i < 0)}{N(\mathcal{O}_i > 0) + N(\mathcal{O}_i < 0)}$
- Asymmetries  $A_i$  are sensitive to presence of CP-violating top-production
  - e.g. via a Chromo Electric Dipole Moment (CEDM)
- Result from likelihood fit after combining ee,  $\mu\mu$  and  $e^{\pm}\mu^{\mp}$ 
  - $A_1 = (2.4 \pm 2.8) \times 10^{-3}, A_3 = (0.4 \pm 2.8) \times 10^{-3}$
- Linear relation between  $A_i$  and dimensionless CEDM  $d_{tG}$ 
  - $\mathcal{O}_1: d_{tG} = 0.10 \pm 0.12_{stat} \pm 0.12_{syst}$
  - $\mathcal{O}_3$ :  $d_{tG} = 0.00 \pm 0.13_{stat} \pm 0.10_{syst}$
- Compatible with SM prediction





LHCP2021, 8 June 2021, Zoom

### **CMS-PAS-TOP-18-007**

## **Properties and decays b**-fragmentation

- Measurement of b-fragmentation in  $t\bar{t}$  events @ 13 TeV by ATLAS and CMS
- In MC generators b-fragmentation is typically tuned from LEP measurements
  - $x_{\rm B} = E_{\rm B}/E_{\rm beam}$  the fraction of energy carried by a b-hadron over the beam (and b-quark) energy in  $e^+e^- \rightarrow b\bar{b}$  events
- For proton colliders the energy of the fragmenting b-quark is not well defined
- Use b-quarks from  $t\bar{t}$  events instead
  - b-jets as proxy for the b-quark
    - colour-connected to the initial state
  - compare b-hadron momentum (ATLAS) or its c-hadron daughter's momentum (CMS) with that of parent b-jet

## 2 of the observables studied by ATLAS:

- $z_{\perp,b} = p_{\perp,b}^{\text{chgd}} / p_{\perp,\text{iet}}^{\text{chgd}}$  and  $z_{L,b} = \vec{p_b}^{\text{chgd}} \cdot \vec{p_{\text{jet}}^{\text{chgd}}} / |\vec{p_{\text{jet}}^{\text{chgd}}}|^2$ , the transverse and longitudinal charged momentum fractions of the b-jet carried by the b-hadron
- unfolded to particle-level in fiducial phase space

## Fit of $r_{\rm b}$ by CMS:

- templates in transverse momentum fraction carried by b-hadron daughters  $(J/\Psi \text{ or } D^0)$  with  $r_b$  as template parameter
- simultaneous fit to  $J/\Psi$ , tagged and un-tagged D<sup>0</sup> distributions
- $ightarrow r_{\rm b}^{\rm CMS} = 0.858 \pm 0.037_{\rm stat} \pm 0.031_{\rm syst}$
- In agreement with tune to  $e^+e^-$ -data



 $Z_{\perp,b}$ 





### S. Menke, MPP München

### Top production and decay

LHCP2021, 8 June 2021, Zoom

### ATLAS-CONF-2020-050



### ZL.b CMS-PAS-TOP-18-012



### Lund-Bowler b-fragmentation

## **Properties and decays > Top quark polarisation**

Measurement of the polarisation of t and  $\overline{t}$  in single-top *t*-channel events @ 13 TeV by ATLAS

## Top quark polarisation

- QCD produces unpolarised top-quarks through  $pp \rightarrow t\bar{t}$
- V A structure of Wtb-vertex leads to fully polarised top-guarks
  - along (against) the direction of the down-type spectator/incoming quark for top (anti-top)
- different mix of dominant and sub-dominant LO process lead to SM expectation of +90% for t and -86% for  $\overline{t}$  (modified by acceptance)
- define coordinates in t-rest-frame:  $\hat{z}'$ : along spectator;  $\hat{y}'$ : orthogonal to  $\hat{z}'$ and incoming light quark;  $\hat{x}'$ : orthogonal to  $\hat{z}'$  and  $\hat{y}'$
- $\ell^{\pm}$  direction from t  $\rightarrow b\ell\nu_{\ell}$  ( $\ell = e, \mu$ ) as analyser
- $\theta_{\ell i}$ , with i = x', y', z' is the polar angle of  $\ell$  w.r.t. axis i

## Event selection

- single, isolated, central e or  $\mu$
- missing transverse momentum  $E_{\perp}^{\text{miss}} > 35 \text{ GeV}$ ; transverse mass of the W<sub> $\ell$ </sub>,  $m_{\perp}$  (W<sub> $\ell$ </sub>) > 60 GeV
- exactly 2 jets ( $|\eta| < 4.5$ ,  $p_{\perp} > 30$  GeV), exactly one b-tagged ( $|\eta| < 2.5$ )
- kinematic "cleaning cuts" to enhance t-channel

## Polarisation

- t:  $P_{x'} = 0.01 \pm 0.18$ ;  $P_{y'} = -0.029 \pm 0.027$ ;  $P_{z'} = 0.91 \pm 0.10$   $\overline{t}$ :  $P_{x'} = -0.02 \pm 0.20$ ;  $P_{y'} = -0.007 \pm 0.051$ ;  $P_{z'} = -0.79 \pm 0.16$
- Bounds on EFT coefficients
  - differential cross-sections constrain Wilson coefficients for  $\mathcal{O}_{tW}$  @ 95%CL:  $C_{tW} \in [-0.7, 1.5]; C_{itW} \in [-0.7, 0.2];$  compatible with SM

### Top production and decay





 $\cos \theta_{\ell \nu'}$ 





Polarisation

LHCP2021, 8 June 2021, Zoom

### ATLAS-CONF-2021-027 (to appear)

 $\cos\theta_{\ell \tau'}$ 



### **EFT** coefficients

## **Properties and decays • Top quark mass**

## Typical analysis in the case of direct mass measurement

- Reconstruct top candidates in data and MC > often with kinematic fit
- Perform Likelihood fit in one ( $m_{top}$ ) or more ((b)-Jet Scale Factor (JSF, bJSF),  $f_{bkgd}$ ) parameters
- Likelihood is based on Templates (ATLAS+CMS) or Ideograms (CMS)

## Templates (ATLAS+CMS)

- Templates are Probability Density Functions (PDF)s constructed from full simulations in reconstructed quantities ( $m_{top}^{reco}$ , kinematic endpoints, ...)
- For many top quark masses ( $m_{top}^{gen}$  and optionally (JSF, bJSF))
- Separately for signal  $(t\overline{t})$  and background
- Templates are parameterised and the parameters fitted linearly to varied quantities  $(m_{top}^{gen}, ...)$
- Likelihood uses the fitted Template functions



## Ideograms (CMS)

- Extension of Templates
- PDFs are constructed like above but for more signal categories
- Several permutations of the same event are allowed (weighted with  $P_{q.o.f}$ )
- PDFs are parameterised and the parameters fitted linearly to  $m_{top}^{gen}$ , ... as above
- Likelihood uses the Ideograms with fitted parameterised PDFs



### LHCP2021, 8 June 2021, Zoom

events / GeV

Normalised

### ATLAS, arxiv:1503.05427





## Direct mass measurements **>** Single t

- *m*<sub>top</sub> from *t*-channel enhanced single-top sample in lepton+jets events @ 13 TeV by CMS Motivation
  - most direct measurements are based on  $t\bar{t}$ -events
  - single-top probes different colour-reconnection situation

## **Event Selection**

- exactly one central, isolated e ( $\mu$ )
- jets are considered up to  $|\eta| < 4.7$  and with  $p_{\perp} > 40$  GeV
- $m_{\perp}(W_{\ell}) > 50 \, \text{GeV}$
- 2 jets with 1 b-tag (2J1T) defines signal region; 2J0T (no b-tag) the bkgd. validation region

## BDT's to enhance *t*-channel single-top

- in 8 kinematic quantities not correlated with  $m_{\rm t}$
- other single-top and  $t\bar{t}$  from sim.; multi-jet from bkgd. validation sample

## Fit to templates in $\ln m_{\rm t}$ after cut on BDT

- as alternative to  $m_{\rm t}$  in order to reduce impact of high-mass tail where statistics are low
- lepton-charge combined and separate (to test for  $\Delta(m_t, m_{\bar{t}})$ )

## First sub-GeV precision result in single-top

 $m_{\rm top} = 172.13 \pm 0.32_{
m stat+prof} + 0.69_{-0.7} {
m syst}$  GeV (charge combined),  $\Delta(m_{
m t}, m_{
m ar t}) = m_{
m t} - m_{
m ar t} = 0.83 + 0.77_{-1.01} {
m tot}$ 

S. Menke, MPP München







### **BDT** output









### Template fit in In m<sub>t</sub>

## mass calibration GeV

## **Properties and decays • Top quark mass**

## Indirect mass measurements

## Opposite approach than for Template/Ideogram methods

- Instead of fitting to MC distributions "folded" with the detector response unfold the data to hadron-/parton-level
- Compare to QCD predictions with  $m_{top}^{pole}$  as parameter
- Pro: More control over mass scheme
- Caveat: Larger uncertainties on both theory and experiment

## Example: Cross section as function of $m_{top}^{pole}$ in LO, NLO and NNLO

- Large dependency on order:  $\sigma_{\rm NNLO}/\sigma_{\rm NLO} \simeq 10\%$
- Relative uncertainty stable:  $\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \simeq 5\% \rightarrow \Delta m_{top} / m_{top} \simeq 1\%$

## Experimental challenges:

- Unfolding is more difficult than folding
  - $\blacktriangleright$  and potentially could re-introduce a dependency on  $m_{top}$  used in the MC
- Cross sections need absolute normalisation

## New observables help

Use shapes of differential cross-sections instead of total cross sections

• For example 
$$\mathcal{R}(m_{top}^{pole}, \rho_s) = \frac{1}{\sigma_{t\bar{t}}+1 \text{iet}} \frac{d\sigma_{t\bar{t}}+1 \text{jet}}{d\rho_s} (m_{top}^{pole}, \rho_s)$$

with 
$$\rho_s = \frac{2m_0}{\sqrt{S_{t+i}}}$$
 (S. Alioli et al., Eur.Phys.J. C73 (2013) 2438)

| 450 | E    |
|-----|------|
| 400 |      |
| 350 | - Li |
| 300 | E    |
| 250 | E E  |
| 200 | E    |
| 150 | E    |
| 100 | Ē    |
| 50  | Ē    |
|     | 150  |



0.7

### S. Menke, MPP München

### Top production and decay

### LHCP2021, 8 June 2021, Zoom

### S. Alekhin, J. Bluemlein, S. Moch Phys.Rev. D89 (2014) 5, 054028



### LO shape – NNLO identical





## Indirect mass measurements $\blacktriangleright$ t $\overline{t}$ + 1jet

 $m_{top}^{pole}$  from differential cross section observable in  $t\bar{t} + 1$  jet in the lepton+jets channel @ 8 TeV by ATLAS

## Event selection

- exactly one central, isolated, e or  $\mu$ , at least 5 central jets, exactly 2 of them b-tagged,  $E_{\perp}^{\text{miss}} > 30$  GeV,  $m_{+}(W_{\ell}) > 30 \, \text{GeV}$
- Leading unused jet must satisfy  $p_{\perp} > 50 \text{ GeV}$  and is combined with t $\overline{t}$ -system to reconstruct  $\rho_s$

## Unfolding of distribution in $\rho_s$ to parton-level

- Compare to calculations in NLO with parton showering
- $m_{top}^{\text{pole}}$  extracted from  $\chi^2$ -fit to theory in unfolded  $\rho_s \in [0, 1]$
- Most sensitive regions are the low and high  $\rho_s$ -bins
- Validation with MC samples with different top-quark masses

$$m_{
m top}^{
m pole} = 171.1 \pm 0.4_{
m stat} \pm 0.9_{
m syst} \, {}^{+0.7}_{-0.3\,
m theo}$$



### S. Menke, MPP München

### LHCP2021, 8 June 2021, Zoom

Events / 0.0

### JHEP11(2019)150



### Reco. $\rho_s$



### Unfolded $\rho_s$



## Properties and decays Top quark mass

## Direct mass measurements

- most precise from Run-1 combinations
- ATLAS:  $m_{\rm t} = 172.69 \pm 0.48_{\rm tot}$  GeV
- CMS:  $m_{\rm t} = 172.44 \pm 0.48_{\rm tot}$  GeV

## Indirect mass measurements

- most precise from CMS differential cross-section @ Run-2
- CMS:  $m_{\rm t} = 170.9 \pm 0.8_{\rm tot}$  GeV
  - but neglected Coulomb- and soft-gluon-resummations near  $t\bar{t}$ -threshold could shift this by up to +1 GeV
- close in precision is  $t\bar{t} + jets$  @ 8 TeV from ATLAS
- ATLAS:  $m_{\rm t} = 171.1 + 1.2 + 1.0 \text{ tot}$ GeV



Indirect mass measurements: Sep 2019



### Direct mass measurements: Apr 2021

### S. Menke, MPP München

### Top production and decay

### LHCP2021, 8 June 2021, Zoom

### 23

| l stat                                                                                       |                                                    |
|----------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                                                              |                                                    |
| $101a1 (S1a1 \pm SyS1)$<br>$1 + 0.95 (0.35 \pm 0.88)$                                        |                                                    |
| $5 \pm 0.35 (0.35 \pm 0.00)$                                                                 | 7 TeV [1]                                          |
| $3 \pm 1.27 (0.75 \pm 1.02)$                                                                 | 7.30-7 TeV [2]                                     |
| $0 \pm 1.27 (0.70 \pm 1.02)$<br>$0 \pm 1.41 (0.54 \pm 1.30)$                                 | 7 TeV [3]                                          |
| + 1 8 (1 4 + 1 2)                                                                            | 7 TeV [3]                                          |
| +21(07+20)                                                                                   | 8 TeV [5]                                          |
| $2 \pm 0.85 (0.41 \pm 0.74)$                                                                 | 8 TeV [5]                                          |
| 2 + 1.15 (0.55 + 1.01)                                                                       | 8 TeV [7]                                          |
| $3 \pm 0.91 (0.39 \pm 0.82)$                                                                 | 8 TeV [8]                                          |
| $\theta \pm 0.48 (0.25 \pm 0.41)$                                                            | 7+8 TeV [8]                                        |
| $3 \pm 0.78 (0.40 \pm 0.67)$                                                                 | 13 TeV [9]                                         |
| $9 \pm 1.06 (0.43 \pm 0.97)$                                                                 | 7 TeV [10]                                         |
| 0 ± 1.52 (0.43 ± 1.46)                                                                       | 7 TeV [11]                                         |
| 9 ± 1.41 (0.69 ± 1.23)                                                                       | 7 TeV [12]                                         |
| 5 ± 0.51 (0.16 ± 0.48)                                                                       | 8 TeV [13]                                         |
| 2 ± 1.23 (0.19 ± 1.22)                                                                       | 8 TeV [13]                                         |
| 2 ± 0.64 (0.25 ± 0.59)                                                                       | 8 TeV [13]                                         |
| 5 ± 1.22 (0.77 ± 0.95)                                                                       | 8 TeV [14]                                         |
| 4 ± 0.48 (0.13 ± 0.47)                                                                       | 7+8 TeV [13]                                       |
| 5 ± 0.63 (0.08 ± 0.62)                                                                       | 13 TeV [15]                                        |
| 3 ± 0.70 (0.14 ± 0.69)                                                                       | 13 TeV [16]                                        |
| 4 ± 0.73 (0.20 ± 0.70)                                                                       | 13 TeV [17]                                        |
| $3\pm0.77~(0.32\pm0.70)$                                                                     | 13 TeV [18]                                        |
| -2013-102 [7] JHEP 09 (2017) 118                                                             | [13] PRD 93 (2016) 072004                          |
| 5) 330 [9] ATLAS-CONF-2019-046                                                               | [15] EPJC 78 (2018) 891                            |
| Sy 156         [10] JHEP 12 (2012) 105           5-2014-055         [11] EPJC 72 (2012) 2202 | [10] EPJC 79 (2019) 368<br>[17] EPJC 79 (2019) 313 |
| 6) 350 [12] EPJC 74 (2014) 2758                                                              | [18] CMS-PAS-TOP-19-009                            |
| 180                                                                                          | 185                                                |
|                                                                                              |                                                    |

## Conclusions

## Top quark production at the LHC

- measured with high precision by CMS and ATLAS at 5, 7, 8 and 13 TeV and in forward phase-space by LHCb
- tt production most dominant
- 5 single-top production channels measured
- recently tttt production cross-section measured by ATLAS (ATLAS-CONF-2021-013):
  - $ightarrow \sigma_{4t}(13 \, \text{TeV}) = 24 \, {+7 \atop -6} \, \text{fb}$
- (multi-)differential cross-section comparisons to NLO and NNLO calculations

## Top quark decays at the LHC

- rich laboratory to explore
  - ► Wtb-vertex structure
  - $\blacktriangleright$  spin-correlations and CP-violation
  - b-fragmentation
  - lepton universality
  - top-quark polarisation

## Measurements of the top-quark mass

- with direct and indirect methods
- direct measurements reached O(0.5 GeV) precision
- indirect measurements reached  $O(0.8 \, \text{GeV})$
- so far no tension between the results

### **Top Quark Production Cross Section Measurements**



## More top-quark production and properties presentations at LHCP2021:

- Monday: Top physics: Top production
- Thursday: Top physics: Top mass and properties

### LHCP2021, 8 June 2021, Zoom

### S. Menke, MPP München

### Top production and decay

### ATL-PHYS-PUB-2021-014

Status: May 2021