

Carlo A. Gottardo NIKHEF, Radboud U. Nijmegen On behalf of the ATLAS and CMS Collaborations

Rare top processes status

Sensitivity and precision in top quark measurements increased over the years

Former rare processes ($t\bar{t}+X$) are now background for new measurements and searches

Approaching the fb frontier

Covered in this talk:

- Latest observation: *tZj*
- Latest evidences: *tītī*, *t*_Y (CMS)

• Searches:

- flavour-changing neutral currents
- lepton flavour violation

tt+*X* covered by <u>J. Thomas-Wilsker</u>

 σ [pb]

10³

10²

 10^{1}

 10^{-1}

 10^{-2})

Top Quark Production Cross Section Measurements

Measurements

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

Same-charge di-lepton pair (28SS), multi-lepton (ML) small branching fraction (12%)

lower backgrounds:

ttw, ttZ, non-prompt leptons, charge mis-identification

Single lepton (1^ℓ), opposite-charge pair (2^ℓOS)

larger branching fraction (56%)

large irreducible background:

<u>tt + additional jets</u>

More details in A. Kong's <u>talk</u>

of top quark Yukawa coupling e.g. 2HDM 13 TeV, NLO in QCD+EW (JHEP 02 (2018) 031) Various lepton ($l = e, \mu$) multiplicity final states probed by ATLAS and CMS

<u>*ttZ*</u>, <u>*ttW*</u> corrections:

SR divided in 17 regions depending on the BDT score

Nik hef

SR14

10

tŦVV

Data

ttΖ

tŦVV

Rare

Signal region

 \geq 6 jets, \geq 2 *b*-jets, H_T > 500 GeV, *Z*-veto in ML channel

Background modelling

Five control regions to normalise

- the <u>non-prompt lepton</u> background
- the <u>*tt*</u> background

Data-driven charge mis-identification estimation

Signal extraction

Simultaneous SR+CR fit

BDT discriminant distribution fit in SR

Measured $\sigma(t\bar{t}t\bar{t}) = 24^{+7}-6$ fb (1.7 σ compatible with SM)

Dominant uncertainty:

modelling of $t\bar{t}W(\geq 7 \text{ jets})$, $t\bar{t}W(\geq 3 b \text{-jets})$

Region definition

1ℓ, ≥ 7 jets or 2ℓOS (*Z*-veto), ≥ 4 jets. Always ≥ 2 *b*-jets, H_T^{jets} > 500 GeV

Strategy

BDTs to reconstruct the top quarks from jet triplets BDTs to the discriminate signal from background Simultaneous fit of 1*l* and 2*l* BDT scores D_{tttt}^{SL} and D_{tttt}^{DL}

Results

o(tītī) < 48 fb 95%CL
Statistical uncertainty ~ systematic uncertainty</pre>

tttt 1l and 2lOS, combination Full-Run 2 search: 1.9σ obs. $(1.0\sigma \text{ exp.})$ [139 fb⁻¹] ATLAS (ATLAS-CONF-2021-013)

Measured $\sigma(t\bar{t}t\bar{t}) = 26^{+17}$ -15 fb

Dominant uncertainties:

 $t\bar{t} \ge 1b$ modelling,(± 8 fb), $t\bar{t} \ge 1c$ cross-section (± 5 fb)

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

More details in G. Gonzalvo Rodriguez's <u>talk</u>

- MC-based shape ("embedded" lepton), normalised in CR w WZ+jets, $t\bar{t}Z$ constrained in CRWZ, CRtīZ(4l), low BDT 92018
- normalised in CRs

Strategy

One BDT / NN per SR, simultaneous fit with CRs

Result

 $\sigma(pp \rightarrow t\ell^+\ell^-q)_{\text{ATLAS}} = 97 \pm 13 \text{ (stat)} \pm 7(\text{syst)} \text{ fb} (\pm 14\%)$ **Dominant uncertainties:**

non-prompt leptons (3%), JES (2%), lepton selection (2%)

SM prediction $\sigma(pp \rightarrow t\ell^+\ell^-q) = 94.2 \pm 3.1 \text{ fb}$

ty evidence

First evidence: 4.4σ obs. (3.0σ exp.) [35.9 fb⁻¹] (Phys. Rev. Lett. 121 (2019) 221802)

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

Motivation: sensitive to magnetic dipole moment

Selection: 1 μ , 1 γ , 1 *b*-jet, 1 forward jet

Backgrounds

 $t\bar{t}\gamma$ (×9 $t\gamma$), V γ (×2 $t\gamma$)

Signal extraction

BDT shape fit $\sigma(pp \rightarrow t\gamma j)B(t \rightarrow \mu vb) = 115 \pm 17 \text{ (stat)} \pm 30 \text{ (syst)} \text{ fb}$ Expected $t\gamma$ events 154 ± 24, observed 220 ± 63 Dominant uncertainty: JES(12%)

Searches

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

Motivation: SM prediction $B(t \rightarrow Hq) \sim 10^{-16}$, any excess = evidence for new physics

Signal region

2 photons, 100 < m_{VV} < 180 GeV *leptonic*: ≥ 1 jet, ≥ 1 l *hadronic*: ≥3 jet, ≥1 *b*-jet

Backgrounds

- non-resonant: $\gamma(\gamma)$ +jets, $t\bar{t}+\gamma(\gamma)$, V+ γ data-driven estimation

Strategy

8 BDTs: $(u, c) \times (lep, had) \times (res, non-res bkg)$

7 categories defined by BDT score per q = u, c flavour 14 $m_{\gamma\gamma}$ distributions to fit

137 fb⁻¹ (13 TeV) √)

Results

Data compatible with absence of signal 95% CL upper limits:

 $B(t \rightarrow Hu) < 1.9 \times 10^{-4} (exp. 3.1 \times 10^{-4})$

 $B(t \rightarrow Hc) < 7.3 \times 10^{-4} (exp. 5.1 \times 10^{-4})$

Dominant uncertainties: *b*-tagging, γ identification

FCNC *tHq* summary

Searches with 36 fb⁻¹ EXPERIMENT $t \rightarrow H(\gamma\gamma)q$ <u>JHEP 10 (2017) 129</u>

 $t \rightarrow H(ML)q$ <u>Phys. Rev. D 98, 032002</u> $t \rightarrow H(b\bar{b}, TT)q JHEP 05 (2019) 123$

Most stringent bound from $t \rightarrow H(b\bar{b}, \tau\tau)q$ $B(t \rightarrow Hu) < 1.2 \times 10^{-3}$ $B(t \rightarrow Hc) < 1.1 \times 10^{-3}$

New CMS-PAS-TOP-20-007 $B(t \rightarrow Hu) < 1.9 \times 10^{-4}$ $B(t \rightarrow Hc) < 7.3 \times 10^{-4}$

Previous bound from $t \rightarrow H(b\bar{b})q$ (JHEP 06 (2018) 102) $B(t \rightarrow Hq) < 4.7 \times 10^{-3}$

Motivation: CLFV suppressed in SM with massive neutrinos. LFV underlying mechanism unknown.

Signal process

tll'q interaction described by EFT operators such as

$$O_{lq}^{(1)ijkl} = (\bar{l}_i \gamma^{\mu} l_j) (\bar{q}_k \gamma^{\mu} q_l)$$

grouped in 3 classes:

$$O_{\text{vector}} = O_{\text{lq}} + O_{\text{lu}} + O_{\text{eq}} + O_{\text{eu}}$$
$$O_{\text{scalar}} = O_{\text{lequ}}^{(1)}$$
$$O_{\text{tensor}} = O_{\text{lequ}}^{(3)}$$

No SM interference q = u, c considered separately EFT vertex in both single top production and tt decay

Signature / SR

Always one hadronic top decay 2lOS (1*e*, 1*µ*), 1 *b*-jet

Backgrounds

ttt(90%), *tW* modelled with MC events

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

Results

Limits on the Wilson coefficients translate into

 $B(t \rightarrow e \mu u/c)_{scalar} < 0.07 / 0.89 \times 10^{-6}$ $B(t \rightarrow e \mu u/c)_{vector} < 0.14 / 1.3 \times 10^{-6}$ $B(t \rightarrow e\mu u/c)_{tensor} < 0.25 / 2.6 \times 10^{-6}$

to be compared with previous ATLAS result $B(t \rightarrow e \mu q) < 6.6 \times 10^{-6}$

Remarks

Upper limit on inclusive process

Decay only, 3^l final state

Different EFT basis, no EFT interpretation

Summary

New results in the investigation of SM rare top processes:

- *tīttī* evidence
- *tZq* differential measurement
- *ty* evidence

Still to do: *tH*, *tWZ*

Top processes as fertile ground for BSM searches:

- •FCNC
- CLFV
- LFU (previous talk by Svan Menke)

All results at: http://cern.ch/go/pNj7

CMS Preliminary

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

BACKUP

tttt 2lSS and ML

First evidence: 4.3σ obs. (2.4σ exp.)

(Eur. Phys. J. C (2020) 80:1085)

Region	Channel	N_{j}	N_b	Other requirements
SR	2LSS/3L	≥ 6	≥ 2	$H_{\rm T} > 500$
CR Conv.	$e^{\pm}e^{\pm} e^{\pm}\mu^{\pm} $	$4 \le N_j < 6$	<u>≥</u> 1	$m_{ee}^{\rm CV} \in [0, 0.1 {\rm GeV}]$
				$200 < H_{\rm T} < 500 {\rm GeV}$
CR HF e	eee eeµ	_	= 1	$100 < H_{\rm T} < 250 {\rm GeV}$
CR HF μ	еµµ µµµ	_	= 1	$100 < H_{\rm T} < 250 {\rm GeV}$
CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm} $	≥ 4	≥ 2	$m_{ee}^{\text{CV}} \notin [0, 0.1 \text{ GeV}], \eta(e) $
				For $N_b = 2, H_T < 500 \text{ GeV}$
				For $N_b \ge 3$, $H_T < 500$ GeV

Parameter	NF _{tīw}	NF _{Mat.} Conv.	NF _{Low} m(y*)	NF _{HF e}	NF _{HF μ}
Value	1.6 ± 0.3	1.6 ± 0.5	0.9 ± 0.4	0.8 ± 0.4	1.0 ± 0.4

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

x² test p-values

	parton level			particle level				
Observable	absolute		normalized		absolute		normali	
	4FS	5FS	4FS	5FS	4FS	5FS	4FS	
$p_{\rm T}({\rm Z})$	97.0	81.8	98.9	97.5	97.1	87.1	99.1	9
$\Delta \phi(\ell,\ell')$	70.1	47.2	61.1	56.0	73.2	58.8	64.8	6
$p_{\mathrm{T}}(\ell_{\mathrm{t}})$	95.0	72.0	93.4	91.3	95.4	73.0	94.0	ç
$m(3\ell)$	6.4	1.8	5.0	4.2	6.7	2.2	3.8	
$p_{\mathrm{T}}(t)$	80.8	69.6	81.0	83.1	79.2	72.4	78.3	8
m(t,Z)	67.5	49.1	59.8	54.6	68.7	65.2	61.3	7
$\cos(\theta_{\rm pol}^{\star})$	82.3	56.0	74.7	78.3	87.5	66.5	83.5	8
$p_{\mathrm{T}}(\mathbf{j'})$	-	-	-	_	49.7	45.4	40.3	3
$ \eta (\mathbf{j'})$	-	-	-	-	51.6	30.9	46.2	2

tZq differential **New preliminary result [138 fb⁻¹]** CMS

(CMS-PAS-TOP-20-010)

Top quark rare production and decay processes | LHCP 2021 | C. A. Gottardo

