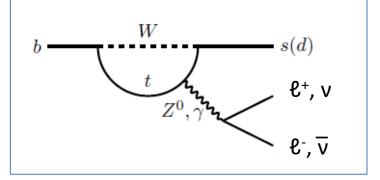
Flavour Physics from non-LHC experiments

Justine Serrano on behalf of Belle II collaboration

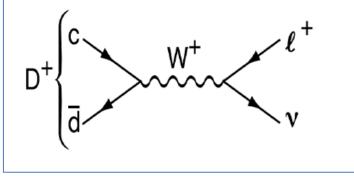
LHCP2021 7-11th of June

Disclaimer

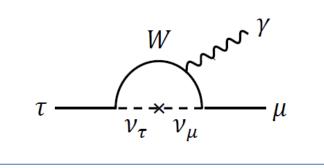

Too many interesting results to fit in this talk! I will try to give an overview of the diversity of flavour results, focusing on a totally biased choice of recent measurements.

NP searches with leptons

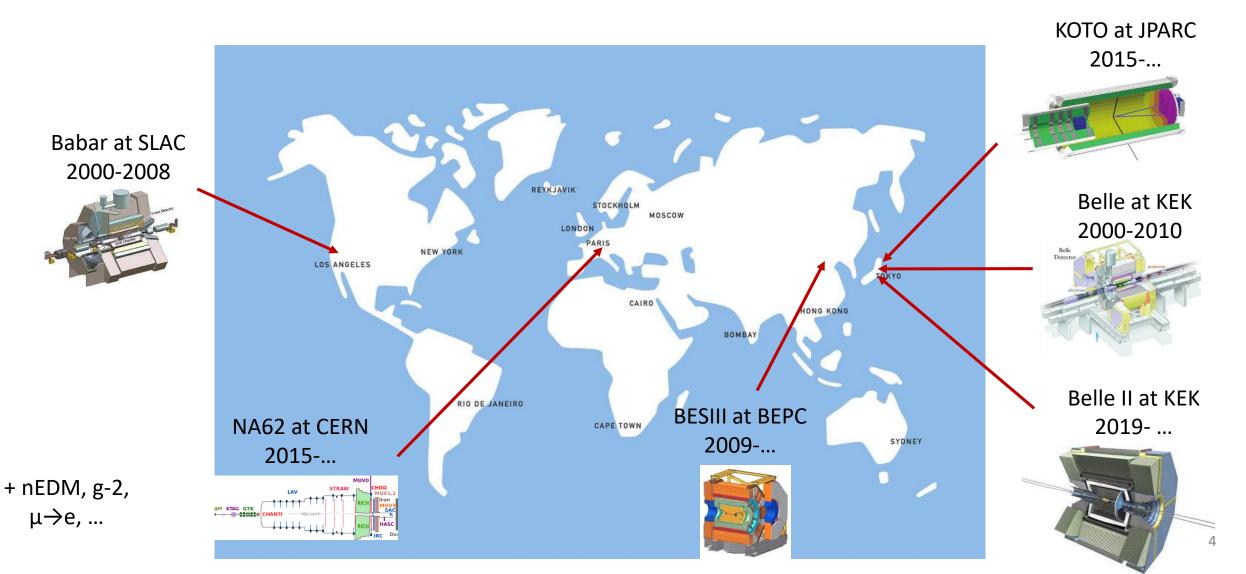
Flavour changing neutral currents


e.g: $s \rightarrow dv\overline{v}$, $b \rightarrow s\ell\ell$

- Loop-level in SM, suppressed by GIM mechanism
- Rare decays, BR ~ 10⁻⁶ − 10⁻¹¹
- Need to control theory errors


Tests of lepton flavor universality

- Ratios of BR with τ/μ, μ/e, τ/e in final state
- Can be tree-level or loop-level transition
- Almost free from theory uncertainties since lepton flavour is conserved in SM

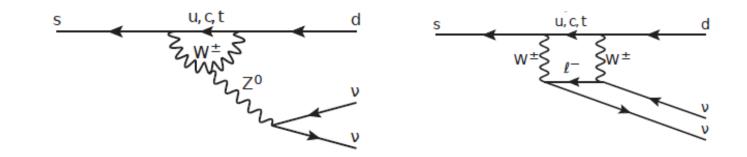

Forbidden decays

- Lepton flavour violating
- Lepton number violating
- Baryon number violating
- Forbidden or very suppressed in SM, BR~O(10⁻⁵⁴)
- Observation is a clear sign of NP

Can do these searches in different flavour sectors: strange, charm, beauty, tau, muon Correlations between observables depends on NP type!

The main players

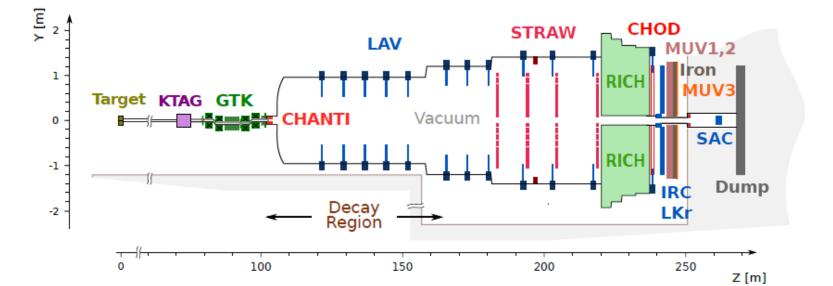
Interplay with LHC flavour physics

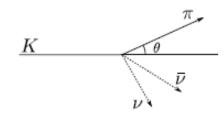

• LHC and non-LHC experiments are very complementary:

LHC	Non-LHC
Large background (pp)	Clean environment (e⁺e⁻)
Large cross section (σ_{bb} =284ub at LHCb)	Small cross section (σ_{bb} =1.1nb at B factories)
Poor tagging and neutral efficiency	High tagging and neutral efficiency
No hermeticity (LHCb)	Hermeticity
All species of b-hadron produced	Mainly B ⁰ and B [±]
Complex triggers	Efficient and simple triggers
Initial state not well known	Constraints on kinematics

- To be very simplistic, LHC experiments are usually better on muonic final states, and heavy b-hadrons (B_s, Λ_b,...)
- Non-LHC experiments are better for final states with missing energy, electrons and neutrals
- There are many exceptions: e.g B \rightarrow K*ee by LHCb, B_s $\rightarrow \gamma\gamma$ at Belle,...

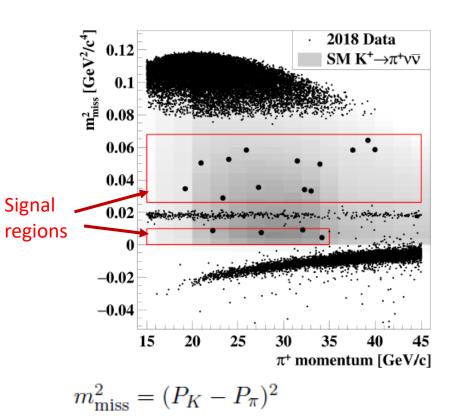
Strange sector


Search for FCNC $K \rightarrow \pi \nu \bar{\nu}$ decays



$K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \nu \bar{\nu}$ at NA62

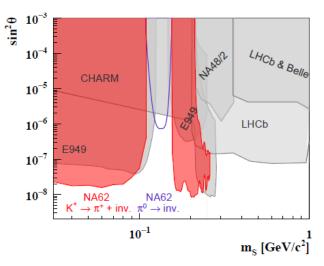
- SM prediction: BR(K⁺ $\rightarrow \pi^{+} \sqrt{\nu}$)=(8.4±1.0).10⁻¹¹
- NA62 uses secondary beam from SPS at CERN (75GeV, 6% of K⁺)
- K⁺ decay in flight in ~120m long region
- Detect a $K^{\scriptscriptstyle +}$ associated with a $\pi^{\scriptscriptstyle +}$ and missing energy
- Vetoes for γ and μ
- Data taken in 2016-2018



7

arXiv:2103.15389

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at NA62

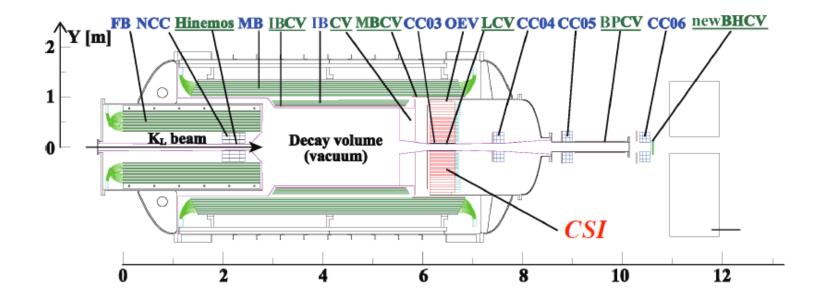


	Expected signal	Expected background	Observed candidates
2016 2017	$\begin{array}{c} 0.267 \pm 0.20_{\rm syst.} \pm 0.32_{\rm ext.} \\ 2.16 \pm 0.13_{\rm syst.} \pm 0.26_{\rm ext.} \end{array}$	$\begin{array}{c} 0.15 \pm 0.093 \\ 1.46 \pm 0.30 \end{array}$	1 2
16' + 17' + 18'	$10.01 \pm 0.42_{\rm syst.} \pm 1.19_{\rm ext.}$	$7.03^{+1.05}_{-0.82}$	20

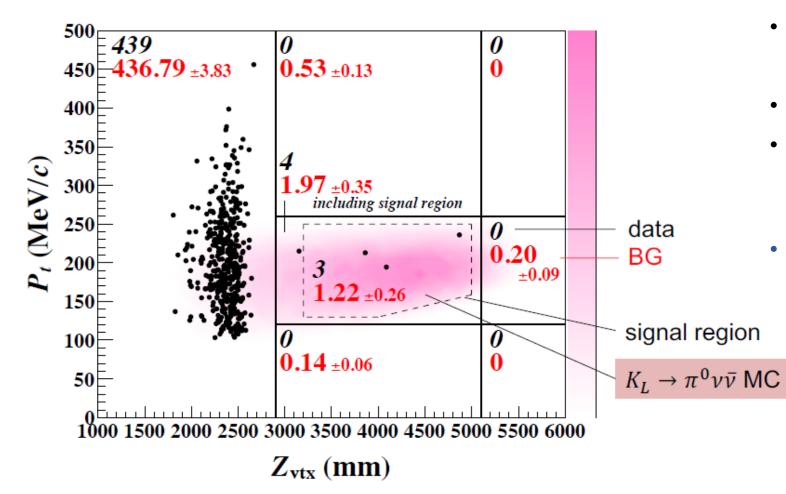
$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4} \pm 0.9).\,10^{-11}$

- Main bkg: upstream bkg, $K^+ \rightarrow \pi^+ \pi^0$, $K^+ \rightarrow \mu^+ \nu$, $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$
- 3.4 sigma evidence !
- BR in agreement with SM predictions

• Reinterpretation in term of $K^+ \rightarrow \pi^+ X$, where X is a feebly interacting particle See talk by C. Hearty at this conference!

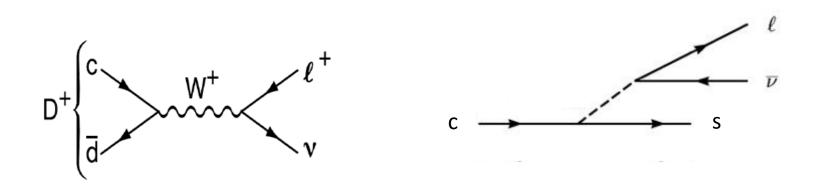


Data taking will resume in July 2021 with an upgraded beam line, limiting upstream backgrounds


$K^0 \rightarrow \pi^0 \nu \bar{\nu}$ at KOTO

- SM prediction BR($K^0 \rightarrow \pi^0 v \bar{v}$) = (3.4±0.6).10⁻¹¹
- KOTO uses a 30 GeV proton beam from J-Parc main ring
- Detect only 2 γ from the π^0 decay in a CSI calorimeter
- Decay volume surrounded by charged and photon vetoes

$K^0 \rightarrow \pi^0 \nu \bar{\nu}$ at KOTO


- New result from 2016-2018 data!
- No signal found:

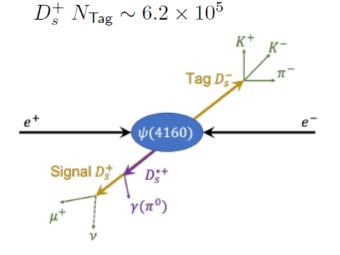
 $BR(K^0 \rightarrow \pi^0 \nu \bar{\nu}) < 4.9 \ 10^{-9} \text{ at } 90\% CL$

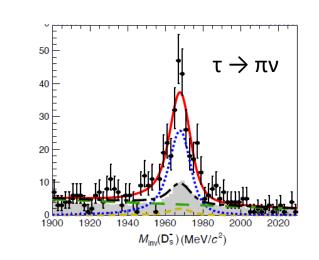
- 2 orders of magnitudes higher than SM
- Main backgrounds: $K^{\scriptscriptstyle +} \to e^{\scriptscriptstyle +} \pi^0 \nu$ and beam halo $K^0 \to \gamma \gamma$
- Improvements foreseen to reach SM sensitivity:
 - New charged particle veto to be installed to suppress K⁺ background
 - New software development to suppress $K^0 \rightarrow \gamma \gamma$ background

Charm sector

Test of LFU in (semi)leptonic decays

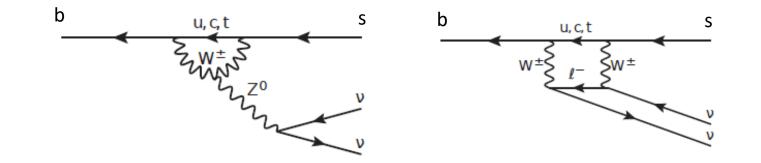
Charm sector: LFUV at BES III




- e⁺e⁻ collider, Vs from 2 to 5 GeV, large dataset recorded at D_(s)D_(s) production threshold
- Full reconstruction of the opposite D_(s): clean reconstruction of decay with missing energy
 Ideal place to test LFU in (semi)leptonic decays
- Example: $D_s \rightarrow \tau/\mu \nu$

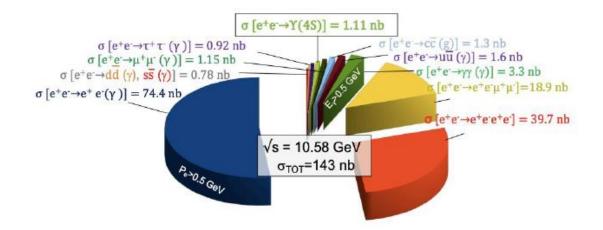
$$\Gamma(D_s^+ \to \ell^+ \nu_\ell) = \frac{G_F^2}{8\pi} f_{D_s^+}^2 m_\ell^2 m_{D_s^+} (1 - \frac{m_\ell^2}{m_{D_s^+}^2})^2 |V_{cs}|^2$$

$$R = \frac{\Gamma(D_s^+ \to \tau^+ \nu_{\tau})}{\Gamma(D_s^+ \to \mu^+ \nu_{\mu})} = \frac{m_{\tau}^2 (1 - \frac{m_{\tau}^2}{m_{D_s}^2})^2}{m_{\mu}^2 (1 - \frac{m_{\mu}^2}{m_{D_s}^2})^2}$$

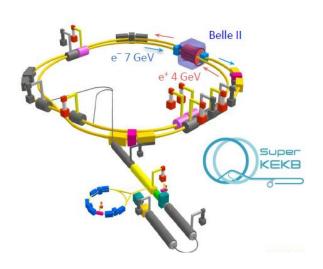

Charm sector: LFUV at BES III

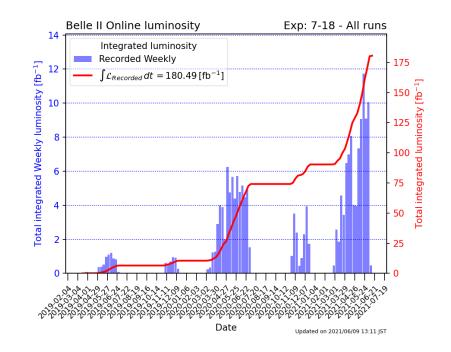
Mode	Measured ratio	SM prediction	Ref
$D^+ \rightarrow \tau/\mu \nu$	3.21±0.77	2.66	PRL 123(2019)211802
$D_s \rightarrow \tau/\mu \nu$	9.58±0.44	9.75	arXiv:2106.02218, arXiv:2102.11734, arXiv:2105.071078
$D^+ \rightarrow \eta \ \mu/e \ v$	0.91± 0.13	0.97-1.00	PRL 124 (2020) 231801
$D^+ \rightarrow \omega \mu/e \nu$	1.05±0.14	0.93-0.99	PRD 101 (2020) 072005
$D^+ \rightarrow \pi^0 \ \mu/e \ v$	0.964±0.045	~0.985	PRL 121 (2018) 171803
$D^0 \rightarrow \pi^+ \mu/e \nu$	0.922±0.037	~0.985	"
$D^0 \rightarrow K^+ \mu/e \nu$	0974±0.014	~0.970	PRL 122 (2019) 011804
$\Lambda_{c}^{+} \rightarrow \Lambda \mu/e \nu$	0.96±0.16	~1	PRL115(2015)221805 PLB767(2017)42

- No evidence of LFUV in charm (semi)leptonic decays with BES III data
- Individual BR measurements also provide test of Lattice QCD and CKM parameters extraction
- More data and results are expected in the coming years, see BES III white paper in Chin. Phys. C 44, 040001 (2020)

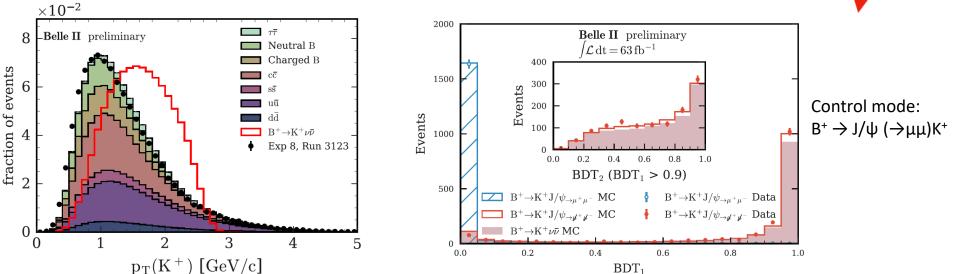

B sector

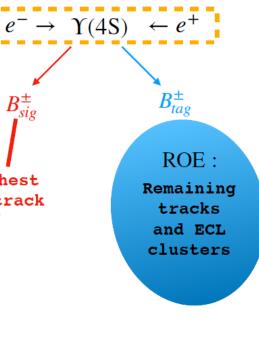
FCNC decays




B sector: $B^+ \rightarrow K^+ v \bar{v}$ at Belle II

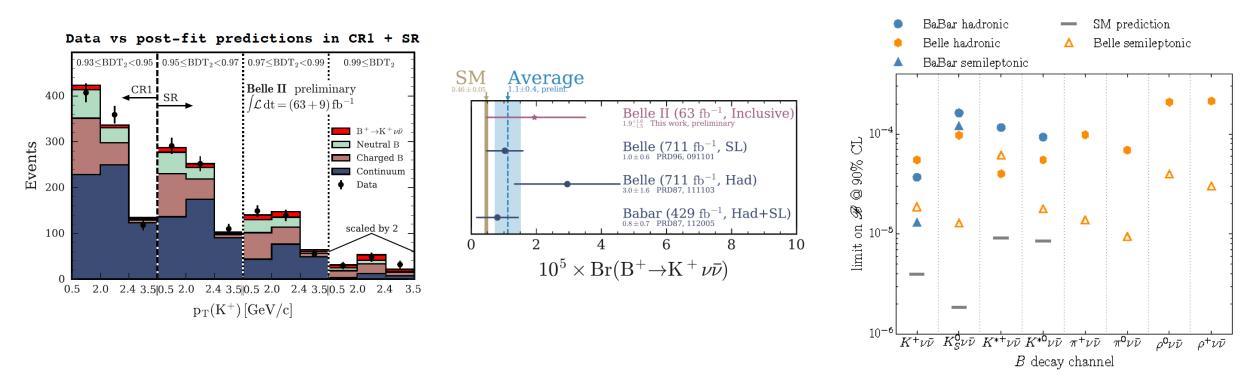
- SuperKEKB is an e⁺e⁻ asymmetric collider, located in Tsukuba, Japan
- $Vs = M_{\psi(4s)} = 10.58 \text{ GeV}$: B factory, but also charm, and tau!


- Machine target:
 - Instantaneous lumi 6x10³⁵ cm⁻²s⁻¹ (30 x KEKB)
 - Integrated lumi 50 ab⁻¹ (50 x Belle)
 - Thanks to the nano beam scheme (vertical beam size 50nm at IP)
- Achieved:
 - World record of instantaneous lumi at 2.9x10³⁴ cm⁻²s⁻¹
 - Recorded 180 fb⁻¹ since 2019
 - Continuous data taking even with COVID crisis



B sector: $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II

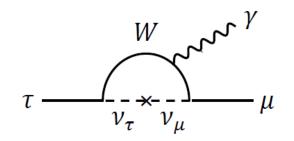
- SM prediction: BR(B⁺ \rightarrow K⁺vv) = (4.6±0.5).10⁻⁶
- Experimentally very challenging !
- New method using an inclusive tagging
 - Identify the signal K^+ as the highest p_T track
 - Remaining tracks and cluster constitutes the Rest of the Event (ROE) •
 - → High signal efficiency but large background
- Two consecutive BDTs (51 variables) used to separate signal from background


 B_{sig}^{\pm}

Highest

pT track

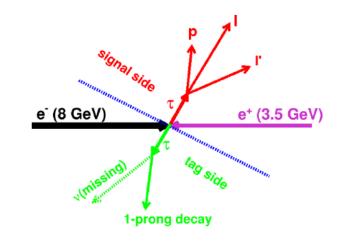
B sector: $B^+ \rightarrow K^+ v \bar{v}$ at Belle II

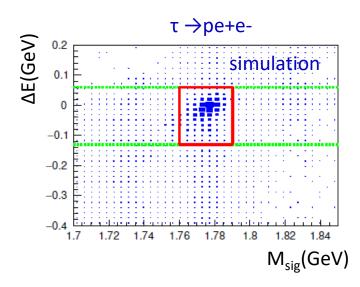

- Signal is obtained with a maximum likelihood fit in bins on BDT2 and $p_T(K)$
- No signal found but result obtained with 63 fb⁻¹ is already competitive with previous measurements!

• Many more channels were done by Belle and Babar, expect new Belle II results soon

τsector

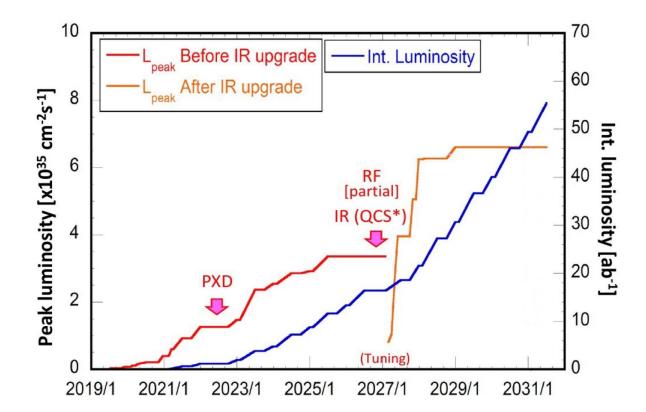
LFV decays


τ sector : LFV decays at Belle


- τ LFV decays have been searched for by Babar, Belle, ATLAS and LHCb
- At B-factories, tau pair events are jet-like. Analysis strategy:
 - Selection based on the topology
 - Signal is searched in 2D plane: M_{sig} and $\Delta E = E_{sig} E_{beam}$
 - Background is evaluated from sidebands
- New results from Belle (PRD 102 (2020) 111101) :

Channel	ϵ (%)	$N_{ m bkg}$	$N_{\rm obs}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}(\times 10^{-8})$
$\tau^- \rightarrow \overline{p}e^+e^-$	7.8	0.50 ± 0.35	1	3.9	< 3.0
$\tau^- \rightarrow p e^- e^-$	8.0	0.23 ± 0.07	1	4.1	< 3.0
$\tau^- \to \overline{p}e^+\mu^-$	6.5	0.22 ± 0.06	0	2.2	< 2.0
$\tau^- \to \overline{p}e^-\mu^+$	6.9	0.40 ± 0.28	0	2.1	< 1.8
$\tau^- \rightarrow p \mu^- \mu^-$	4.6	1.30 ± 0.46	1	3.1	< 4.0
$\tau^- \to \overline{p}\mu^-\mu^+$	5.0	1.14 ± 0.43	0	1.5	< 1.8

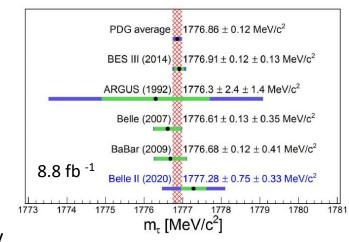
Improve LHCb results by one order of magnitude



• New results from Belle (arXiv:2103.12994) on $\tau \rightarrow \ell \gamma$: BR($\tau \rightarrow e\gamma$) < 5.6 10⁻⁸ and BR ($\tau \rightarrow \mu \gamma$) < 4.2 10⁻⁸

Prospects for Belle II

- We are just at the beginning!
- Belle II is uniquely sensitive to
 - Inclusive final states such as $B \rightarrow X\ell\ell$, $D \rightarrow X\ell\ell$
 - Final states with neutrinos or taus (e.g B \rightarrow X $\tau\mu$)
 - As nearly equal μ and e efficiency for LFU test
 - B tagging efficiency improved by a factor 2 wrt Belle thanks to the *Full Event Interpretation*


Observables	Belle	Bel	le II
	(2017)	5 ab^{-1}	50 ab^{-1}
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu})$	$< 40 \times 10^{-6}$	25%	9%
$\mathcal{B}(B \to K^+ \nu \overline{\nu})$	$<19\times10^{-6}$	30%	11%
$A_{CP}(B \to X_{s+d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1.5	0.5
$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 3.5 \ \text{GeV}^2/c^4)$	26%	10%	3%
$Br(B\to K^+\mu^+\mu^-)/Br(B\to K^+e^+e^-)$	28%	11%	4%
$(1 < q^2 < 6 \text{ GeV}^2/c^4)$			
$Br(B \rightarrow K^{*+}(892)\mu^+\mu^-)/Br(B \rightarrow$	24%	9%	3%
$K^{*+}(892)e^+e^-) \ (1 < q^2 < 6 \ { m GeV}^2/c^4)$			
$\mathcal{B}(B_s \to \gamma \gamma)$	$< 8.7 \times 10^{-6}$	23%	_
$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	< 0.8	_

Belle II Physics Book

Prospects for Belle II

- Many τ physics results to come:
 - Improve τ LFV limits by ~2 orders of magnitude
 - Mass (BELLE2-CONF-PH-2020-010) and lifetime

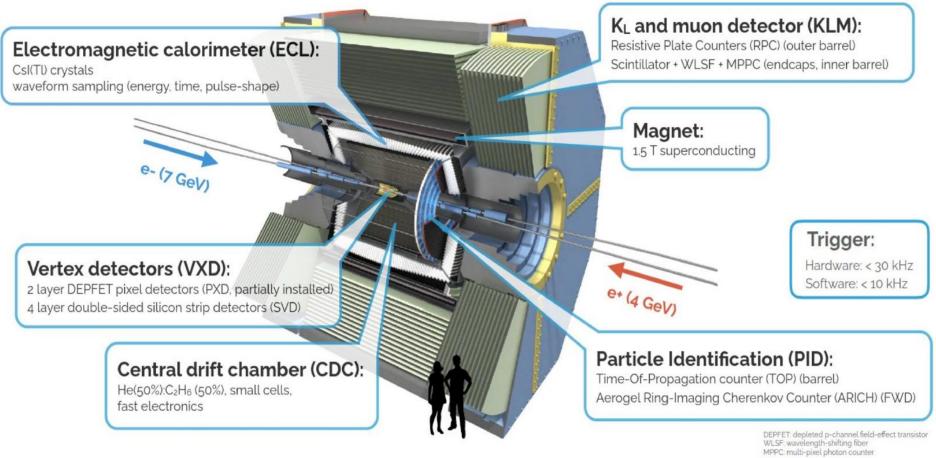
- CPV
- Electric and magnetic dipole moments
- Michel parameters
- ...

- But also CKM and CPV measurements:
 - Rediscovery of B $\rightarrow \eta' K$ (BELLE2-CONF-PH-2021-009) TDCPV sensitive to new physics in the loop
 - First $B \rightarrow \pi^0 \pi^0$ decays reconstructed (BELLE2-CONF-PH-2021-009), used for ϕ_2 measurements
 - Many more rediscoveries are being done, see talk by F. Meier today!

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	$50 \ {\rm ab}^{-1}$
$\sin 2\phi_1(B \to J/\psi K^0)$	$0.667 \pm 0.023 \pm 0.012$	0.012	0.005
$S(B \to \phi K^0)$	$0.90^{+0.09}_{-0.19}$	0.048	0.020
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.032	0.015
$S(B \to J/\psi \pi^0)$	$-0.65 \pm 0.21 \pm 0.05$	0.079	0.025
ϕ_2 [°]	85 ± 4 (Belle+BaBar)	2	0.6
$S(B \to \pi^+\pi^-)$	$-0.64 \pm 0.08 \pm 0.03$	0.04	0.01
$Br.(B\to\pi^0\pi^0)$	$(5.04 \pm 0.21 \pm 0.18) \times 10^{-6}$	0.13	0.04
$S(B\to K^0\pi^0)$	-0.11 ± 0.17	0.09	0.03

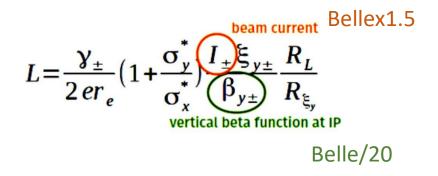
• And spectroscopy, exotics, dark sectors,..

See Belle II Physics Book


Conclusion

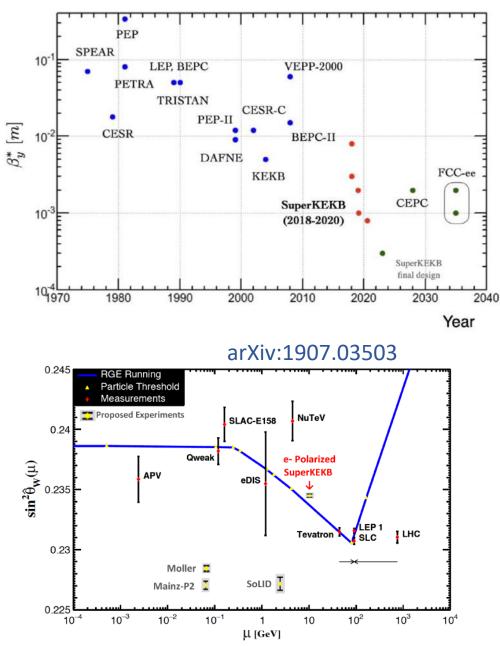
- Flavour physics is a very active field at LHC and non-LHC experiments
 - This talk aimed to provide an insight of this variety
- Beautiful program for the coming years
 - Data taking will restart at NA62 and KOTO, BES III and Belle II will continue data taking
 - Several upgrades are being discussed (KLEVER at CERN, polarized beams at Belle II,...)
- Many key results are awaited in the coming years!

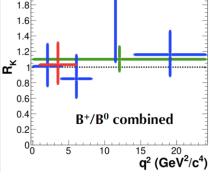
Back up


Belle II

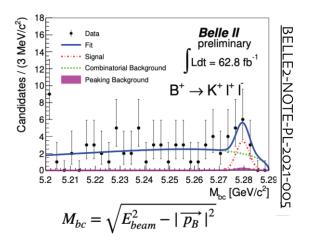
Similar or better performances than Belle even with 10x more background!

Belle II luminosity


Four steps: *Intermediate luminosity* (1-2 x 10³⁵ /cm²/sec, 5-10 ab⁻¹); <u>High Luminosity</u> (6.5 x 10³⁵/cm²/sec, 50 ab⁻¹) with a detector upgrade Polarization Upgrade, Advanced R&D Ultra high luminosity (4 x 10³⁶/cm²/sec, 250 ab⁻¹), R&D Project

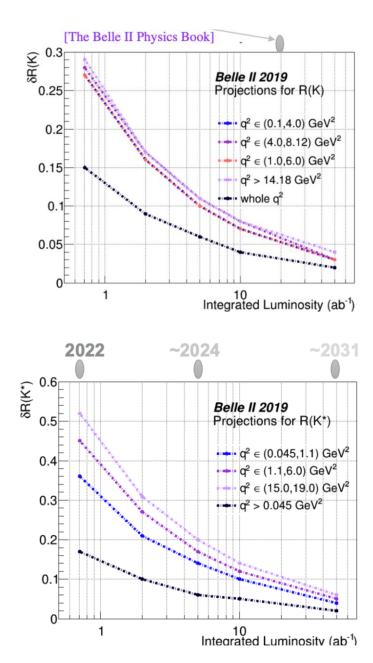

Example of physics reach with 40ab⁻¹ with polarized beam:

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_f s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f - 2Q_f \sin^2 \theta_W$$



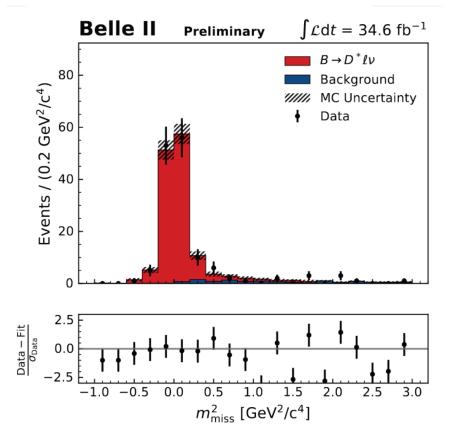
Prospect for RK^(*) at Belle II

 Belle results on RK and RK* statistically limited JHEP03(2021)105



- About 20fb⁻¹ needed to confirm RK anomaly at 5 sigma
- $B^+ \rightarrow K^+ \ell \ell$ already seen with 63 fb-1
- Belle II can also do inclusive final state analysis

In comparison to LHCb, 3 different aspects to consider: efficiency, statistics and resolution

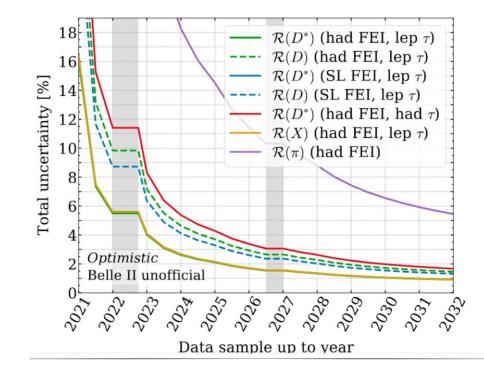

and the second se		and the second se
	Belle II	LHCb
Signal	K⁺, K₅	K⁺
Same K e e Statistics	1 ab-1	1 fb-1
B->K mu mu Efficiency	30 %	~5 %
B->K e e Efficiency	30 %	<5% Lower due to tracking and trigger
B->K e e Resolution	Better thanks to M _{bc}	Worse because of Brems
High q² bin	Accessible	Hard

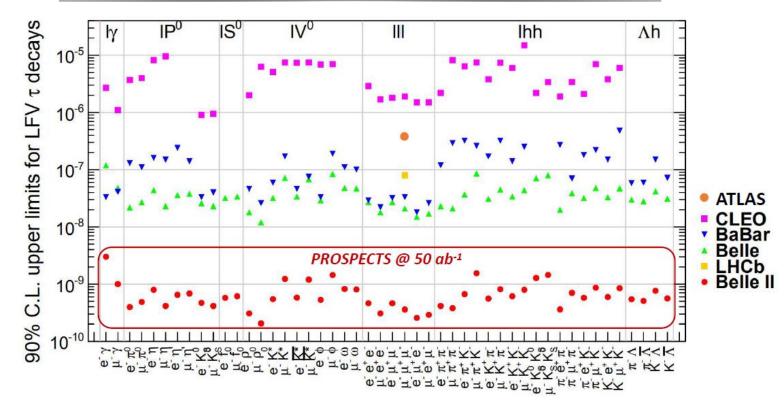
Prospects for RD(*)

• Rediscovery of $B \rightarrow D^{+*} \ell v$

Belle coll., BELLE2-CONF-PH-2020-009

Bernlochner et al, arXiv:2101.08326




Table 49: Composition of the systematic uncertainty in each Belle analysis. Relative uncertainties in percent are shown. The analysis method and the τ decay mode are indicated in the parentheses; their meaning is explained in the caption of Table 48.

	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}
MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}\%$
$B \to D^{**} \ell \nu_\ell$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%
Hadronic B	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}\%$
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%
Total	7.1%	5.2%	$^{+3.4}_{-3.5}\%$	$^{+10.0}_{-9.0}\%$

More Prospects on LFV modes

Mode	BR U.L. (90% CL)
$B^0 \rightarrow K^{*0} \mu^+ e^-$	<1.2x10 ⁻⁷ (Belle)
$B^+ \rightarrow K^{*0} \mu^- e^+$	<1.6x10 ⁻⁷ (Belle)
B+→K ^{*0} µe	<1.8x10 ⁻⁷ (Belle)
$B^+ \rightarrow K^+ \mu^- e^+$	<7.0x10 ⁻⁹ (LHCb) <3.0x10 ⁻⁸ (Belle)
$B^+ \rightarrow K^+ \mu^+ e^-$	<6.4x10 ⁻⁹ (LHCb) <8.5x10 ⁻⁸ (Belle)
$B^0 \rightarrow K_s^0 \mu^{\pm} e^{\mp}$	<1.8x10 ⁻⁷ (Belle)
$B^+ \rightarrow K^+ \tau \mu$	<4.8x10 ⁻⁵ (BaBar)
B+→K+τe	<3.0x10 ⁻⁵ (BaBar)
$B^+ \rightarrow K^+ \tau^+ \mu^-$	<3.9x10 ⁻⁵ (LHCb)

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${ m Br}(B^+ o K^+ au^+ au^-)\cdot 10^5$	< 32	< 6.5	< 2.0
${ m Br}(B^0 o au^+ au^-) \cdot 10^5$	< 140	< 30	< 9.6
${ m Br}(B^0_s o au^+ au^-)\cdot 10^4$	< 70	< 8.1	_
${ m Br}(B^+ o K^+ au^\pm e^\mp) \cdot 10^6$	-	-	< 2.1
${ m Br}(B^+ o K^+ au^\pm \mu^\mp) \cdot 10^6$	_	_	< 3.3
${ m Br}(B^0 o au^\pm e^\mp) \cdot 10^5$	_	_	< 1.6
${ m Br}(B^0 o au^\pm \mu^\mp) \cdot 10^5$	_	_	< 1.3

