9th Edition of the Large Hadron Collider Physics Conference

June 10, 2021

Constraints on BSM from the Higgs Sector

Funded by: FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades/Project P18-FRJ-3735

Jorge de Blas University of Granada

- The discovery of the I25 GeV Higgs boson is arguably the major achievement of the LHC (so far)
 - ✓ It finally provides evidence of the last ingredient required to confirm the validity of the SM at low energies...

- The discovery of the I25 GeV Higgs boson is arguably the major achievement of the LHC (so far)
 - ✓ It finally provides evidence of the last ingredient required to confirm the validity of the SM at low energies...

✓ ...but also reminds us of the limitations of the Standard Model...

- How do we understand the mechanism of EWSB?
- Hierarchy problem: Why $M_h \ll M_P$?

- The discovery of the I25 GeV Higgs boson is arguably the major achievement of the LHC (so far)
 - ✓ It finally provides evidence of the last ingredient required to confirm the validity of the SM at low energies...

✓ …but also reminds us of the limitations of the Standard Model…

- How do we understand the mechanism of EWSB?
- Hierarchy problem: Why $M_h \ll M_P$?

Now Physics

مرو

- The discovery of the I25 GeV Higgs boson is arguably the major achievement of the LHC (so far)
 - ✓ It finally provides evidence of the last ingredient required to confirm the validity of the SM at low energies...

 \checkmark ... and brings up further interesting (related) questions:

- ▶ Is the Higgs an elementary particle or a composite state?
- How does it interact with itself?
- What is its role in answering other important questions?
- Are there more scalars? Pseudo-scalars?

Jorge de Blas University of Granada

The Higgs connection to BSM

BSM scenarios dealing with these issues tend to:

Introduce modifications of the Higgs properties → indirect tests of new physics
 Introduce new particles in the scalar sector → Direct searches

The LHC is the only current experiment with direct access to both ways of testing the Higgs sector

Jorge de Blas University of Granada

The Higgs at the LHC

The LHC is the only current experiment with direct access to both ways of testing the Higgs sector (directly and indirectly)

The Higgs at the LHC

The LHC is the only current experiment with direct access to both ways of testing the Higgs sector (directly and indirectly)

Constraints on BSM from Higgs Physics Model-Independent

Modified Higgs couplings

- Several frameworks have been used to parameterise BSM deformations on Higgs interactions:
 - ✓ The к framework ← Used mainly during Run I
 - ✓ The EFT framework ← Being adopted in Run 2 results and for future interpretations
 - ✓ Two EFTs consistent with the SM particles and symmetries at low energies, differing in the treatment of the scalar sector:
 - The non-linear/Higgs EFT (HEFT): EW symmetry non-linearly realised
 - The (dimension-6) SMEFT: EW symmetry linearly realised

$\textbf{SM} \subset \textbf{SMEFT} \subset \textbf{HEFT}$

In short:

- HEFT when there are light BSM states (compared to EW scale) or BSM sources of sym. breaking
- SMEFT when heavy new states (compared to EW scale)

See: R. Alonso, E. E. Jenkins, A. Manohar, JHEP 08 (2016) 10, arXiv: 1605.03602 [hep-ph] T. Cohen, N. Craig, X. Lu, D. Sutherland, JHEP 03 (2021) 237, arXiv: 2008.08597 [hep-ph] For a geometrical interpretation of the differences between HEFT and SMEFT

Jorge de Blas University of Granada

• **HEFT:** SM particles and symmetries at low energies, but does not assume relation between the Higgs scalar and the Goldstone bosons of EWSB (non-linear EWSB)

• Leading order HEFT Lagrangian (L=0 in chiral (χ) dimensions):

$$\mathcal{L}_{\mathrm{LO}} = -\frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$+ i \bar{q}_L \not{D} q_L + i \bar{\ell}_L \not{D} \ell_L + i \bar{u}_R \not{D} u_R + i \bar{d}_R \not{D} d_R + i \bar{e}_R \not{D} e_R$$

$$+ \frac{v^2}{4} \langle D_\mu U^\dagger D^\mu U \rangle (1 + F_U(h)) + \frac{1}{2} \partial_\mu h \partial^\mu h - V(h)$$

$$- \frac{v}{\sqrt{2}} \left[\bar{q}_L Y_u(h) U P_+ q_R + \bar{q}_L Y_d(h) U P_- q_R + \bar{\ell}_L Y_e(h) U P_- \ell_R + \text{ h.c.} \right]$$

$$\begin{bmatrix} \text{[bosons]}_{\chi} = 0 \\ [\psi\psi]_{\chi} = [\partial]_{\chi} =$$

Terms relevant for single-Higgs processes

$$\mathcal{L}_{\text{fit}} = 2c_V \left(m_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2} m_Z^2 Z_\mu Z^\mu \right) \frac{h}{v} - \sum_{\psi} c_{\psi} m_{\psi} \bar{\psi} \psi \frac{h}{v}$$

Modifications of SM couplings (like κ framework)

• **HEFT:** SM particles and symmetries at low energies, but does not assume relation between the Higgs scalar and the Goldstone bosons of EWSB (non-linear EWSB)

• Leading order HEFT Lagrangian (L=0 in chiral (χ) dimensions):

$$\begin{aligned} \mathcal{L}_{\mathrm{LO}} &= -\frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ i \bar{q}_L \not{D} q_L + i \bar{\ell}_L \not{D} \ell_L + i \bar{u}_R \not{D} u_R + i \bar{d}_R \not{D} d_R + i \bar{e}_R \not{D} e_R \\ &+ \frac{v^2}{4} \langle D_\mu U^{\dagger} D^\mu U \rangle \left(1 + F_U(h) \right) + \frac{1}{2} \partial_\mu h \partial^\mu h - V(h) \\ &- \frac{v}{\sqrt{2}} \left[\bar{q}_L Y_u(h) U P_+ q_R + \bar{q}_L Y_d(h) U P_- q_R + \bar{\ell}_L Y_e(h) U P_- \ell_R + \text{ h.c.} \right] \end{aligned}$$
 [bosons]_{\chi} = 0 \\ [\psi \psi]_{\chi} = [\partial]_{\chi} = [\partial]_{\chi} = [g_{\mathrm{weak}}]_{\chi} = 1 \\ [\Delta \mathcal{L}]_{\chi} = 2L + 2 \\ U = \exp(2i\frac{G_a}{v}T_a) \\ V(h), \ F_U(h), \ Y_{\psi}(h) \\ polynomials \text{ in } h \end{aligned}

Terms relevant for single-Higgs processes

$$\mathcal{L}_{\rm fit} = 2c_V \left(m_W^2 W^+_{\mu} W^{-\mu} + \frac{1}{2} m_Z^2 Z_{\mu} Z^{\mu} \right) \frac{h}{v} - \sum_{\psi} c_{\psi} m_{\psi} \bar{\psi} \psi \frac{h}{v} + \frac{e^2}{16\pi^2} c_{\gamma} F_{\mu\nu} F^{\mu\nu} \frac{h}{v} + \frac{e^2}{16\pi^2} c_{Z\gamma} Z_{\mu\nu} F^{\mu\nu} \frac{h}{v} + \frac{g_s^2}{16\pi^2} c_g \langle G_{\mu\nu} G^{\mu\nu} \rangle \frac{h}{v},$$

Modifications of SM couplings (like κ framework)

NLO local terms to properly parameterise corr. to
 SM rad. processes
 (Different than *κ* framework)

• Fits to LHC Higgs observables: Run I + Run 2 (~36-140 fb⁻¹)

\int	Custodial + U	niversal fermio	n interact	ions		1.10	5% prob. regions		· · · · · · · · · · · · · · · · · · ·
	Fit result	95% Prob.	Correla	ations			ggs V+Higgs		
c_V	$1.02 {\pm} 0.02$	[0.99, 1.06]	1.00			E\	W		1
c_f	$0.96{\pm}0.03$	[0.89, 1.02]	0.36	1.00		1.00			
					J				
						ర 0.95			1
						0.90			1
(Custodial							
	 Fit res	sult 95%	% Prob.	_		0.85			
	$c_{\rm V} = 1.02 \pm 0$	0.04 [0.0	4 1 09	_					HEP fit
	$c_V = 1.02 \pm 0$	0.04 [0.5]	04. 0.13]			0.80 <u>6</u>	0.9	1.0	1.1 1.2
	$c_{\gamma} = 0.02 \pm 0$	$0.14 \qquad [-0.$	$26. \ 0.30$			l		cv	
	$c_{Z\gamma}$ 0.00 (Fi	(xed))					1	
	c_t 0.94±0	0.06 [0.8	[32, 1.05]				$c_{\rm W} =$	102 ± 00	3
	$c_b = 0.98 \pm 0$	0.09 [0.8	[31 , 1.15]			EWPO:	$c_V =$	1.02 ± 0.0	050/ Duch
	c_{μ} 1.02 \pm 0	0.19 [0.6	[4 , 1.39]			1	$c_V \in$	[0.96, 1.08]	95% Prod.
	$c_{ au}$ 0.93 \pm 0	$0.07 \qquad [0.7]$	8 , 1.07]			$S = rac{1}{12\pi}$	$(1 - c_V^2) \mathrm{l}$	$\log \frac{\Lambda^2}{m_h^2}$	$\Lambda 4\pi v$
l				_	J	$T = -\frac{1}{1}$	$\frac{3}{6\pi c_w^2}(1-\alpha)$	$\left({{E_V^2} } ight) \log {{\Lambda^2} \over {m_h^2}}$	$r_{\rm M} = -rac{1}{\sqrt{\left 1-c_V^2 ight }}$

Updated from JB, O. Eberhardt, C. Krause, JHEP 07 (2018) 048, arXiv 1803.00939 [hep-ph]

• **SMEFT:** SM particles and symmetries at low energies, with the Higgs scalar in an $SU(2)_L$ doublet + mass gap with new physics (entering at scale Λ)

• LO SMEFT Lagrangian (assuming B & L) \Rightarrow Dim-6 SMEFT: 2499 operators

Warsaw basis operators (Neglecting flavour)

Operator	Notation	Operator	Notation
$ \begin{array}{c} \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{l_L}\gamma^{\mu}l_L\right)\\ \left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{q_L}\gamma^{\mu}q_L\right)\\ \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{q_L}\gamma^{\mu}q_L\right) \end{array} $	$\mathcal{O}_{ll}^{(1)} \ \mathcal{O}_{qq}^{(1)} \ \mathcal{O}_{lq}^{(1)}$	$ \begin{array}{l} \left(\overline{q_L} \gamma_\mu T_A q_L \right) \left(\overline{q_L} \gamma^\mu T_A q_L \right) \\ \left(\overline{l_L} \gamma_\mu \sigma_a l_L \right) \left(\overline{q_L} \gamma^\mu \sigma_a q_L \right) \end{array} $	$\mathcal{O}_{qq}^{(8)} \ \mathcal{O}_{lq}^{(3)}$
$ \begin{array}{l} \left(\overline{e_{R}}\gamma_{\mu}e_{R}\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right) \\ \left(\overline{u_{R}}\gamma_{\mu}u_{R}\right)\left(\overline{u_{R}}\gamma^{\mu}u_{R}\right) \\ \left(\overline{u_{R}}\gamma_{\mu}u_{R}\right)\left(\overline{d_{R}}\gamma^{\mu}d_{R}\right) \\ \left(\overline{e_{R}}\gamma_{\mu}e_{R}\right)\left(\overline{u_{R}}\gamma^{\mu}u_{R}\right) \end{array} $	$egin{array}{lll} \mathcal{O}_{ee} & & \ \mathcal{O}_{uu}^{(1)} & & \ \mathcal{O}_{ud}^{(1)} & & \ \mathcal{O}_{eu}^{(1)} & & \ \mathcal{O}_{eu} & & \ \end{array}$	$ \begin{array}{c} \left(\overline{d_R}\gamma_{\mu}d_R\right)\left(\overline{d_R}\gamma^{\mu}d_R\right) \\ \left(\overline{u_R}\gamma_{\mu}T_A u_R\right)\left(\overline{d_R}\gamma^{\mu}T_A d_R\right) \\ \left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{d_R}\gamma^{\mu}d_R\right) \end{array} $	$\mathcal{O}_{dd}^{(1)} \ \mathcal{O}_{ud}^{(8)} \ \mathcal{O}_{ed}^{(8)}$
$ \begin{array}{c} \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)\\ \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{u_R}\gamma^{\mu}u_R\right)\\ \left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{u_R}\gamma^{\mu}u_R\right)\\ \left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{d_R}\gamma^{\mu}d_R\right)\\ \left(\overline{l_L}e_R\right)\left(\overline{d_R}q_L\right) \end{array} $	$egin{aligned} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qd}^{(1)} \ \mathcal{O}_{ledq} \end{aligned}$	$ \begin{array}{c} \left(\overline{q_L} \gamma_\mu q_L \right) \left(\overline{e_R} \gamma^\mu e_R \right) \\ \left(\overline{l_L} \gamma_\mu l_L \right) \left(\overline{d_R} \gamma^\mu d_R \right) \\ \left(\overline{q_L} \gamma_\mu T_A q_L \right) \left(\overline{u_R} \gamma^\mu T_A u_R \right) \\ \left(\overline{q_L} \gamma_\mu T_A q_L \right) \left(\overline{d_R} \gamma^\mu T_A d_R \right) \end{array} $	$egin{aligned} \mathcal{O}_{qe} \ \mathcal{O}_{ld} \ \mathcal{O}_{qu}^{(8)} \ \mathcal{O}_{qd}^{(8)} \end{aligned}$
$ \begin{array}{c} \left(\overline{q_L}u_R\right)i\sigma_2\left(\overline{q_L}d_R\right)^{\mathrm{T}} \\ \left(\overline{l_L}e_R\right)i\sigma_2\left(\overline{q_L}u_R\right)^{\mathrm{T}} \end{array} $	$\mathcal{O}_{qud}^{(1)} \ \mathcal{O}_{lequ}$	$ \begin{array}{c} \left(\overline{q_L}T_A u_R\right) i\sigma_2 \left(\overline{q_L}T_A d_R\right)^{\mathrm{T}} \\ \left(\overline{l_L}u_R\right) i\sigma_2 \left(\overline{q_L}e_R\right)^{\mathrm{T}} \end{array} $	$\mathcal{O}_{qud}^{(8)} \ \mathcal{O}_{qelu}$

$ \begin{array}{c c} \left(\phi^{\dagger}\phi\right)\square\left(\phi^{\dagger}\phi\right) & \mathcal{O}_{\phi\square} & \frac{1}{3}\left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi} \\ \hline \left(\phi^{\dagger}i\overrightarrow{D}_{\mu}\phi\right)\left(\overline{l_{L}}\gamma^{\mu}l_{L}\right) & \mathcal{O}_{\phi l}^{(1)} & \left(\phi^{\dagger}i\overrightarrow{D}_{\mu}^{a}\phi\right)\left(\overline{l_{L}}\gamma^{\mu}\sigma_{a}l_{L}\right) & \mathcal{O}_{\phi l}^{(3)} \\ \hline \left(\phi^{\dagger}i\overrightarrow{D}_{\mu}\phi\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right) & \mathcal{O}_{\phi e}^{(1)} & \left(\phi^{\dagger}i\overrightarrow{D}_{\mu}^{a}\phi\right)\left(\overline{q_{L}}\gamma^{\mu}\sigma_{a}q_{L}\right) & \mathcal{O}_{\phi q}^{(3)} \\ \hline \left(\phi^{\dagger}i\overrightarrow{D}_{\mu}\phi\right)\left(\overline{q_{L}}\gamma^{\mu}q_{L}\right) & \mathcal{O}_{\phi u}^{(1)} & \left(\phi^{\dagger}i\overrightarrow{D}_{\mu}\phi\right)\left(\overline{q_{L}}\gamma^{\mu}\sigma_{a}q_{L}\right) & \mathcal{O}_{\phi d}^{(3)} \\ \hline \left(\phi^{\dagger}i\sigma_{\mu}^{2}iD_{\mu}\phi\right)\left(\overline{u_{R}}\gamma^{\mu}d_{R}\right) & \mathcal{O}_{\phi u} & \left(\phi^{\dagger}i\overrightarrow{D}_{\mu}\phi\right)\left(\overline{d_{R}}\gamma^{\mu}d_{R}\right) & \mathcal{O}_{\phi d} \\ \hline \left(\overline{l_{L}}\sigma^{\mu\nu}e_{R}\right)\phi B_{\mu\nu} & \mathcal{O}_{eB} & \left(\overline{l_{L}}\sigma^{\mu\nu}e_{R}\right)\sigma^{a}\phi W_{\mu\nu}^{a} & \mathcal{O}_{eW} \\ \hline \left(\overline{q_{L}}\sigma^{\mu\nu}d_{R}\right)\phi B_{\mu\nu} & \mathcal{O}_{dB} & \left(\overline{q_{L}}\sigma^{\mu\nu}d_{R}\right)\sigma^{a}\phi W_{\mu\nu}^{a} & \mathcal{O}_{dW} \\ \hline \left(\overline{q_{L}}\sigma^{\mu\nu}d_{R}\right)\phi G_{\mu\nu}^{A} & \mathcal{O}_{uG} & \left(\overline{q_{L}}\sigma^{\mu\nu}\lambda^{A}d_{R}\right)\phi G_{\mu\nu}^{A} & \mathcal{O}_{dG} \\ \hline \left(\phi^{\dagger}\phi\right)\left(\overline{l_{L}}\phi e_{R}\right) & \mathcal{O}_{e\phi} \\ \hline \left(\phi^{\dagger}\phi\right)\left(\overline{q_{L}}\phi u_{R}\right) & \mathcal{O}_{\phi D} & \\ \hline \left(\phi^{\dagger}\phi B_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\phi B} & \phi^{\dagger}\phi \widetilde{B}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\phi \overline{W}} \\ \hline \left(\phi^{\dagger}\sigma_{a}\phi W_{\mu\nu}^{a}B^{\mu\nu} & \mathcal{O}_{\phi W} & \phi^{\dagger}\sigma \widetilde{W}_{\mu\nu}^{a}B^{\mu\nu} & \mathcal{O}_{\phi \overline{W}} \\ \hline \left(\phi^{\dagger}\sigma_{a}\phi W_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi \overline{G}} \\ \hline \left(\varepsilon_{a}c_{\mu\nu}W_{\mu\nu}^{b}W_{\mu\nu}^{c\mu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi \overline{G}} \\ \hline \left(\varepsilon_{a}c_{a}c_{\mu}W_{\mu\nu}^{b}W_{\mu\nu}^{c\mu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi \overline{G}} \\ \hline \left(\varepsilon_{a}c_{a}c_{\mu}W_{\mu\nu}^{b}W_{\mu\nu}^{c\mu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi \overline{G}} \\ \hline \left(\varepsilon_{a}c_{a}c_{\mu}W_{\mu\nu}^{b}W_{\mu\nu}^{c\mu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi \overline{G}} \\ \hline \left(\varepsilon_{a}c_{a}c_{\mu}W_{\mu\nu}^{b}W_{\mu\nu}^{c\mu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi \overline{G}} \\ \hline \left(\varepsilon_{a}c_{a}c_{\mu}W_{\mu\nu}^{b}W_{\mu\nu}^{c\mu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi \overline{G}} \\ \hline \left(\varepsilon_{a}c_{a}c_{\mu}W_{\mu\nu}^{b}W_{\mu\nu}^{c\mu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu} & \mathcal{O}_{\phi \overline{G}} \\ \hline \left(\varepsilon_{a}c_{\mu}c_{\mu}W_{\mu\nu}^{b}W_{\mu\nu}^{b}W_{\mu\nu}^{c\mu$	Operator	Notation	Operator	Notation
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\phi^{\dagger}\phi ight)\Box\left(\phi^{\dagger}\phi ight)$	$\mathcal{O}_{\phi\square}$	$rac{1}{3}\left(\phi^{\dagger}\phi ight)^{3}$	\mathcal{O}_{ϕ}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi\right)\left(\overline{l_{L}}\gamma^{\mu}l_{L}\right)$	$\mathcal{O}_{\phi l}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} \phi\right) \left(\overline{l_L} \gamma^{\mu} \sigma_a l_L\right)$	$\mathcal{O}_{\phi l}^{(3)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right)$	$\mathcal{O}_{\phi e}^{(1)}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\phi^{\dagger}i \overleftrightarrow{D}_{\mu} \phi\right) \left(\overline{q_L} \gamma^{\mu} q_L\right)$	$\mathcal{O}_{\phi q}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D}{}_{\mu}^{a} \phi\right) \left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} q_{L}\right)$	$\mathcal{O}_{\phi q}^{(3)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\phi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu}\phi\right) \left(\overline{u_R}\gamma^{\mu}u_R\right)$	$\mathcal{O}_{\phi u}^{(1)}$	$\left(\phi^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} \phi\right) \left(\overline{d_R} \gamma^{\mu} d_R\right)$	$\mathcal{O}_{\phi d}^{(1)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\phi^{T}i\sigma_{2}iD_{\mu}\phi\right)\left(\overline{u_{R}}\gamma^{\mu}d_{R}\right)$	$\mathcal{O}_{\phi ud}$	(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\overline{l_L}\sigma^{\mu\nu}e_R\right)\phi B_{\mu\nu}$	\mathcal{O}_{eB}	$\left(\overline{l_L}\sigma^{\mu\nu}e_R\right)\sigma^a\phi W^a_{\mu\nu}$	\mathcal{O}_{eW}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\overline{q_L}\sigma^{\mu\nu}u_R)\phi B_{\mu\nu}$	\mathcal{O}_{uB}	$(\overline{q_L}\sigma^{\mu\nu}u_R)\sigma^a\phiW^a_{\mu\nu}$	\mathcal{O}_{uW}
$ \begin{array}{cccc} \left(\overline{q_L}\sigma^{\mu\nu}\lambda^A u_R\right)\phi G^{\mu}_{\mu\nu} & \mathcal{O}_{uG} & \left(\overline{q_L}\sigma^{\mu\nu}\lambda^A d_R\right)\phi G^{\mu}_{\mu\nu} & \mathcal{O}_{dG} \\ \hline \left(\phi^{\dagger}\phi\right)\left(\overline{l_L}\phi e_R\right) & \mathcal{O}_{e\phi} & \\ \left(\phi^{\dagger}\phi\right)\left(\overline{q_L}\phi u_R\right) & \mathcal{O}_{u\phi} & \left(\phi^{\dagger}\phi\right)\left(\overline{q_L}\phi d_R\right) & \mathcal{O}_{d\phi} \\ \hline \left(\phi^{\dagger}D_{\mu}\phi\right)\left(\left(D^{\mu}\phi\right)^{\dagger}\phi\right) & \mathcal{O}_{\phi D} & \\ \phi^{\dagger}\phi B_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\phi B} & \phi^{\dagger}\phi \widetilde{B}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\phi \widetilde{B}} \\ \phi^{\dagger}\phi W^a_{\mu\nu}W^{a\mu\nu} & \mathcal{O}_{\phi W} & \phi^{\dagger}\phi \widetilde{W}^a_{\mu\nu}W^{a\mu\nu} & \mathcal{O}_{\phi \widetilde{W}} \\ \phi^{\dagger}\sigma_{a\phi}W^a_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{WB} & \phi^{\dagger}\sigma_{a\phi}\widetilde{W}^a_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\widetilde{W}B} \\ \phi^{\dagger}\phi G^A_{\mu\nu}G^A{}^{\mu\nu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}^A_{\mu\nu}G^A{}^{\mu\nu} & \mathcal{O}_{\phi \widetilde{G}} \\ \hline \varepsilon_{abc}W^a_{\mu}{}^{\nu}W^b_{\nu}{}^{\rho}W^c_{\mu} & \mathcal{O}_{W} & \varepsilon_{abc}\widetilde{W}^a_{\mu}{}^{\nu}W^b_{\nu}{}^{\rho}W^c_{\mu} & \mathcal{O}_{\widetilde{W}} \\ f_{ABC}G^A{}^{\mu\nu}G^B{}^{\rho}G^C_{\mu}{}^{\mu} & \mathcal{O}_{G} & f_{ABC}G^A{}^{\mu\nu}G^B{}^{\rho}G^C_{\mu}{}^{\mu} & \mathcal{O}_{\widetilde{G}} \end{array} \right)$	$(\overline{q_L}\sigma^{\mu\nu}d_R)\phi B_{\mu\nu}$	\mathcal{O}_{dB}	$(\overline{q_L}\sigma^{\mu\nu}d_R)\sigma^a\phi W^a_{\mu\nu}$	\mathcal{O}_{dW}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\overline{q_L}\sigma^{\mu\nu}\lambda^A u_R\right)\phi G^A_{\mu\nu}$	\mathcal{O}_{uG}	$\left(\overline{q_L}\sigma^{\mu\nu}\lambda^A d_R\right)\phi G^A_{\mu\nu}$	\mathcal{O}_{dG}
$ \begin{array}{cccc} \left(\phi^{\dagger}\phi\right)\left(\overline{q_{L}}\tilde{\phi}u_{R}\right) & \mathcal{O}_{u\phi} & \left(\phi^{\dagger}\phi\right)\left(\overline{q_{L}}\phid_{R}\right) & \mathcal{O}_{d\phi} \\ \hline \left(\phi^{\dagger}D_{\mu}\phi\right)\left(\left(D^{\mu}\phi\right)^{\dagger}\phi\right) & \mathcal{O}_{\phi D} & \\ \phi^{\dagger}\phi B_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\phi B} & \phi^{\dagger}\phi \widetilde{B}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\phi \widetilde{B}} \\ \phi^{\dagger}\phi W^{a\mu\nu}_{\mu\nu}W^{a\mu\nu} & \mathcal{O}_{\phi W} & \phi^{\dagger}\phi \widetilde{W}^{a}_{\mu\nu}W^{a\mu\nu} & \mathcal{O}_{\phi \widetilde{W}} \\ \phi^{\dagger}\sigma_{a}\phi W^{a}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{WB} & \phi^{\dagger}\sigma_{a}\phi \widetilde{W}^{a}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\widetilde{W}B} \\ \phi^{\dagger}\phi G^{A}_{\mu\nu}G^{A\mu\nu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu} & \mathcal{O}_{\phi \widetilde{G}} \\ \hline \varepsilon_{abc} W^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\nu} & \mathcal{O}_{W} & \varepsilon_{abc} \widetilde{W}^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\rho} & \mathcal{O}_{\widetilde{W}} \\ f_{ABC} G^{A\nu}_{\mu} G^{B\rho} G^{C\mu}_{\mu} & \mathcal{O}_{G} & f_{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho} G^{C\mu}_{\mu} & \mathcal{O}_{\widetilde{G}} \end{array} $	$\left(\phi^{\dagger}\phi\right)\left(\overline{l_{L}}\phie_{R}\right)$	$\mathcal{O}_{e\phi}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\phi^{\dagger}\phi\right)\left(\overline{q_{L}}\widetilde{\phi}u_{R} ight)$	$\mathcal{O}_{u\phi}$	$\left(\phi^{\dagger}\phi\right)\left(\overline{q_{L}}\phid_{R} ight)$	$\mathcal{O}_{d\phi}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\phi^{\dagger}D_{\mu}\phi\right)\left(\left(D^{\mu}\phi\right)^{\dagger}\phi\right)$	$\mathcal{O}_{\phi D}$		
$ \begin{array}{ccccc} \phi^{\dagger}\phi W^{a}_{\mu\nu}W^{a\mu\nu} & \mathcal{O}_{\phi W} & \phi^{\dagger}\phi \widetilde{W}^{a}_{\mu\nu}W^{a\mu\nu} & \mathcal{O}_{\phi \widetilde{W}} \\ \phi^{\dagger}\sigma_{a}\phi W^{a}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{WB} & \phi^{\dagger}\sigma_{a}\phi \widetilde{W}^{a}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\widetilde{W}B} \\ \hline \phi^{\dagger}\phi G^{A}_{\mu\nu}G^{A\mu\nu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu} & \mathcal{O}_{\phi \widetilde{G}} \\ \hline \varepsilon_{abc} W^{a\nu}_{\mu}W^{b\rho}W^{c\mu}_{\rho} & \mathcal{O}_{W} & \varepsilon_{abc} \widetilde{W}^{a\nu}_{\mu}W^{b\rho}W^{c\mu}_{\rho} & \mathcal{O}_{\widetilde{W}} \\ f_{ABC} G^{A,\nu}_{\mu}G^{B,\rho}G^{C,\mu}_{c} & \mathcal{O}_{G} & f_{ABC} \widetilde{G}^{A,\nu}_{\mu}G^{B,\rho}G^{C,\mu}_{c} & \mathcal{O}_{\widetilde{G}} \end{array} $	$\phi^{\dagger}\phi\;B_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\phi B}$	$\phi^{\dagger}\phi \; \widetilde{B}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\phi \widetilde{B}}$
$ \begin{array}{ccccc} \phi^{\dagger}\sigma_{a}\phi \ W^{a}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{WB} & \phi^{\dagger}\sigma_{a}\phi \ \widetilde{W}^{a}_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\widetilde{W}B} \\ \phi^{\dagger}\phi \ G^{A}_{\mu\nu}G^{A\mu\nu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \ \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu} & \mathcal{O}_{\phi \widetilde{G}} \\ \hline \varepsilon_{abc} \ W^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\nu} & \mathcal{O}_{W} & \varepsilon_{abc} \ \widetilde{W}^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\rho} & \mathcal{O}_{\widetilde{W}} \\ f_{ABC} \ G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{c} & \mathcal{O}_{G} & f_{ABC} \ \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{c} & \mathcal{O}_{\widetilde{G}} \end{array} $	$\phi^{\dagger}\phi W^{a}_{\mu\nu}W^{a\ \mu\nu}$	$\mathcal{O}_{\phi W}$	$\phi^{\dagger}\phi \; \widetilde{W}^{a}_{\mu\nu}W^{a\;\mu\nu}$	$\mathcal{O}_{\phi \widetilde{W}}$
$ \begin{array}{cccc} \phi^{\dagger}\phi \ G^{A}_{\mu\nu}G^{A\ \mu\nu} & \mathcal{O}_{\phi G} & \phi^{\dagger}\phi \ \widetilde{G}^{A}_{\mu\nu}G^{A\ \mu\nu} & \mathcal{O}_{\phi \widetilde{G}} \\ \hline \varepsilon_{abc} \ W^{a\ \nu}_{\mu} W^{b\ \rho}_{\nu} W^{c\ \mu}_{\rho} & \mathcal{O}_{W} & \varepsilon_{abc} \widetilde{W}^{a\ \nu}_{\mu} W^{b\ \rho}_{\nu} W^{c\ \mu}_{\rho} & \mathcal{O}_{\widetilde{W}} \\ f_{ABC} \ G^{A\ \nu}_{\mu} G^{B\ \rho}_{\mu} G^{C\ \mu}_{c} & \mathcal{O}_{G} & f_{ABC} \ \widetilde{G}^{A\ \nu}_{\mu} G^{B\ \rho}_{\nu} G^{C\ \mu}_{c} & \mathcal{O}_{\widetilde{G}} \end{array} $	$\phi^{\dagger}\sigma_{a}\phi W^{a}_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{WB}	$\phi^{\dagger}\sigma_{a}\phi \ \widetilde{W}^{a}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\widetilde{W}B}$
$ \begin{aligned} \varepsilon_{abc} W^{a \nu}_{\mu} W^{b \rho}_{\nu} W^{c \mu}_{\rho} & \mathcal{O}_{W} & \varepsilon_{abc} \widetilde{W}^{a \nu}_{\mu} W^{b \rho}_{\nu} W^{c \mu}_{\rho} & \mathcal{O}_{\widetilde{W}} \\ f_{ABC} G^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho} & \mathcal{O}_{G} & f_{ABC} \widetilde{G}^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho} & \mathcal{O}_{\widetilde{G}} \end{aligned} $	$\phi^{\dagger}\phi~G^{A}_{\mu u}G^{A\ \mu u}$	$\mathcal{O}_{\phi G}$	$\phi^{\dagger}\phi \; \widetilde{G}^{A}_{\mu\nu}G^{A\;\mu\nu}$	$\mathcal{O}_{\phi \widetilde{G}}$
$f_{ABC} G^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho} \mathcal{O}_{G} \qquad f_{ABC} \widetilde{G}^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho} \mathcal{O}_{\widetilde{G}}$	$\varepsilon_{abc} W^{a \ \nu}_{\mu} W^{b \ \rho}_{\nu} W^{c \ \mu}_{\rho}$	\mathcal{O}_W	$\varepsilon_{abc} \widetilde{W}^{a \ \nu}_{\mu} W^{b \ \rho}_{\nu} W^{c \ \mu}_{\rho}$	$\mathcal{O}_{\widetilde{W}}$
	$f_{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_G	$f_{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$\mathcal{O}_{\widetilde{G}}$

- Many EFT operators entering in Higgs processes at LO "Model-independent" only when including ALL contributing operators
- But SMEFT automatically incorporates correlations between Higgs and other processes imposed by gauge invariance + linearly realised EWSB

• Most EFT directions in Higgs processes in a LO EFT fit can be closed by combining Higgs with EWPO and Diboson (e.g. *WW*, *WZ*) observables

• SMEFT fit to EW/Higgs/diBoson: LHC Run I + Run 2 (~36-140 fb⁻¹)

JB, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, L. Silvestrini, In preparation

Jorge de Blas University of Granada

- Many EFT operators entering in Higgs processes at LO "Model-independent" only when including ALL contributing operators
- But SMEFT automatically incorporates correlations between Higgs and other processes imposed by gauge invariance + linearly realised EWSB

- Most EFT directions in Higgs processes in a LO EFT fit can be closed by combining Higgs with EWPO and Diboson (e.g. WW, WZ) observables
- A model independent description of *ttH* as well requires to add Top observables

• SMEFT fit to EW/Higgs/diBoson/Top

(See also J.J. Ethier, F. Maltoni, E. R. Nocera, J. Rojo, arXiv: 2105.00006 [hep-ph] for recent Higgs/diBoson/Top EFT interpretations)

Jorge de Blas University of Granada

- Many EFT operators entering in Higgs processes at LO "Model-independent" only when including ALL contributing operators
- But SMEFT automatically incorporates correlations between Higgs and other processes imposed by gauge invariance + linearly realised EWSB

- Most EFT directions in Higgs processes in a LO EFT fit can be closed by combining Higgs with EWPO and Diboson (e.g. *WW*, *WZ*) observables
- A model independent description of *ttH* as well requires to add Top observables

Jorge de Blas University of Granada

Constraints from Higgs Physics Specific BSM scenarios

• EFT fits provide a useful phenomenological tool to learn from New Physics

• EFT fits provide a useful phenomenological tool to learn from New Physics

 Projecting (SM)EFT results to specific scenarios requires matching between the NP model and the EFT

Matching: Wilson coefficients as function of BSM model couplings and masses

Limits on EFT Wilson coefficients

- EFT fits provide a useful phenomenological tool to learn from New Physics
- Projecting (SM)EFT results to specific scenarios requires matching between the NP model and the EFT

Matching fully classified at tree-level

Name	S	\mathcal{S}_1	\mathcal{S}_2	φ	Ξ	Ξ_1	Θ_1	Θ_3
Irrep	$(1,1)_{0}$	$(1,1)_1$	$(1,1)_2$	$(1,2)_{\frac{1}{2}}$	$(1,3)_{0}$	$(1,3)_1$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
λŢ				п	п	4		
Name	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
Irrep	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$		
		0	2		-			
Name	Ω_1	Ω_2	Ω_4	Υ	Φ			
Irrep	$(6,1)_{\frac{1}{3}}$	$(6,1)_{-\frac{2}{3}}$	$(6,1)_{\frac{4}{3}}$	$(6,3)_{\frac{1}{3}}$	$(8,2)_{\frac{1}{2}}$			

19 scalars bosons

									_
Name	${\mathcal B}$	\mathcal{B}_1	\mathcal{W}	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	\mathcal{H}	\mathcal{L}_1	
Irrep	$(1,1)_{0}$	$\left(1,1\right) _{1}$	$(1,3)_{0}$	$(1,3)_1$	$(8,1)_{0}$	$(8,1)_1$	$(8,3)_{0}$	$(1,2)_{\frac{1}{2}}$	
Name	\mathcal{L}_3	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	\mathcal{Q}_5	\mathcal{X}	\mathcal{Y}_1	\mathcal{Y}_5	1
Irrep	$(1,2)_{-\frac{3}{2}}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{\frac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3,3)_{\frac{2}{3}}$	$(\bar{6},2)_{\frac{1}{6}}$	$(\bar{6},2)_{-rac{5}{6}}$	

16 vector bosons

Name	N	E	Δ_1	Δ_3	Σ	Σ_1	
Irrep	$(1,1)_{0}$	$(1,1)_{-1}$	$(1,2)_{-\frac{1}{2}}$	$(1,2)_{-\frac{3}{2}}$	$(1,3)_{0}$	$(1,3)_{-1}$	
Name	U	D	Q_1	Q_5	Q_7	T_1	T_2

13 vector-like fermions

The full UV/IR tree-level dictionary: 48 multiplets contribute to dim 6

J. B., J.C. Criado, M. Pérez- Victoria, J. Santiago, JHEP 1803 (2018) 109

Jorge de Blas University of Granada

• EFT limits on simple BSM extensions contribution at tree-level to dimension 6:

J.Ellis, M. Madigan, K. Mimasu, V. Sanz, T. You, JHEP 04 (2021) 279, arXiv: 2012.02779 [hep-ph]

Classical "Higgs" BSM scenarios

- Well-motivated BSM scenarios designed to address specific issues of the SM. In particular,
 - ✓ Naturalness models: to solve or ameliorate the hierarchy problem, e.g.
 - SUSY
 - Composite Higgs scenarios
 - Neutral Naturalness models
 - ► Relaxion, ...
- These typically induce sizeable modifications of the Higgs couplings...
- ... and involve extensions of the scalar sector, e.g.
 - ✓ SUSY → Two Higgs Doublet Models
 - ✓ Models with axion-like particles
- In what follows we go over a few of these scenarios and summarise some implications of current LHC Higgs measurements

Composite Higgs Models

- The Higgs is a resonance of some strong dynamics not far from the TeV
 ✓ Dynamical explanation of strong dynamics scale m_{*} (as in QCD)
 ✓ Motivated as solutions to the hierarchy problem
- Strongly Interacting Light Higgs (SILH) scenario: Strong dynamics, characterised by a single mass scale m_{*} and coupling g_{*}, generates a H doublet with same quantum numbers as the SM one (pNGB or accidentally light)
 - ✓ Leading effects in Higgs couplings

$$\begin{split} \Delta \mathcal{L}_{\text{SILH}} = & \frac{g_{\star}^2}{2m_{\star}^2} C_{\phi} \partial_{\mu} (\phi^{\dagger} \phi) \partial^{\mu} (\phi^{\dagger} \phi) + \frac{g_{\star}^2}{m_{\star}^2} C_y \sum y_{\psi} \bar{\psi}_L \phi \psi_R (\phi^{\dagger} \phi) \\ & + \frac{g_{\star}^2 g_s^2}{16\pi^2 m_{\star}^2} C_g (\phi^{\dagger} \phi) G_{\mu\nu}^A G^{A\ \mu\nu} + \frac{g_{\star}^2 g'^2}{16\pi^2 m_{\star}^2} C_{\gamma} (\phi^{\dagger} \phi) B_{\mu\nu} B^{\mu\nu} \end{split}$$

Modifications of Higgs couplings

$$c_V = 1 - rac{C_\phi}{2} \xi, \ \ c_f = 1 - (rac{C_\phi}{2} + C_y) \xi, \ \ c_g = 2C_g \xi, \ \ c_\gamma = C_\gamma \xi$$

$$\xi \equiv rac{g_{\star}^2 v^2}{m_{\star}^2} \equiv rac{v^2}{f^2} ~~ C_{\phi,y,g,\gamma} \sim O(1)$$

Composite Higgs Models

• 95% probability bounds from Higgs physics on generic SILH scenarios:

	Scenario	C_{ϕ}	C_y	$ C_g $	$ C_\gamma $	$\xi_{95\%}$	$f_{95\%}$ [GeV]
CH modele with pNCP H	/ SILH1a	1	0	0	0	0.049	1107
	SILH1b	1	1	0	0	0.054	1057
CH models with	SILH2 a	1	0	1	1	0.029	1433
accidentally light H	∖ SILH2b	1	1	1	1	0.039	1253

Benchmarks from L. Vecchi contributions to HL-LHC WG2 report , arXiv: 1902.00134 [hep-ph]

Reproduces well limits from minimal CH models based on SO(5)/SO(4):

$$c_V = \sqrt{1-\xi}, \ \ c_f^{(4)} = \sqrt{1-\xi}, \ \ c_f^{(5)} = rac{1-2\xi}{\sqrt{1-\xi}}$$

Fermion couplings depending on SO(5) irrep (here 4 or 5)

Scenario	$\xi_{95\%}$	$f_{95\%}~[{ m GeV}]$
Min CH-4	0.049	1117
Min CH-5	0.053	1067

Updated from JB, O. Eberhardt, C. Krause, JHEP 07 (2018) 048, arXiv 1803.00939 [hep-ph]

Neutral Naturalness

• SM comes with a Twin: Higgs sector invariant under a global U(4) symmetry

$$H=\left(egin{array}{c} h_A\ h_B\end{array}
ight)=\left(f+rac{\sigma}{\sqrt{2}}
ight)e^{irac{\sqrt{2}\Pi_aT_a}{f}}\Phi$$

 $V(H) = -m^{2} |H|^{2} + \lambda |H|^{4} + \delta (|h_{A}|^{4} + |h_{B}|^{4})$ $U(4) \text{ symmetric} \qquad \text{Explicit } U(4) \rightarrow U(3)$ $<H> \text{ breaks } U(4) \rightarrow U(3) \qquad \text{ breaking}$ $1 \text{ radial mode } + 7 \text{ Goldstones} \quad (\text{Gauge loops})$ $3 \text{ Long. } W,Z / 3 \text{ Long. } W_{\text{Twin}},Z_{\text{Twin}}$ $1 \text{ light scalar} \leftarrow 125 \text{ GeV Higgs (pNGB)}$

- Higgs mass protected by approximate global symmetries:
 - ✓ Higgs is a pNGB: Mixture of SM Higgs and Twin Higgs

$$\checkmark \text{ Symmetry also}_{top} \stackrel{!}{=} y \stackrel{!}{H}_A \stackrel{!}{Q}_A \stackrel{!}{U}_A^c + y \stackrel{!}{H}_B \stackrel{!}{Q}_B \stackrel{!}{U}_B^c \qquad \text{tects H mass}$$
$$\Delta \mathcal{L}_{\text{Yuk}} = y_t h_A \overline{Q}_A \stackrel{!}{U}_A \stackrel{!}{Q}_A \stackrel{!}{U}_A^c \stackrel{!}{P}_A \stackrel{!}{Q}_B \stackrel{!}{Q}_B \stackrel{!}{U}_B \stackrel{!}{Q}_B \stackrel{!}{U}_B \stackrel{!}{Q}_A \stackrel{!}{U}_B \stackrel{!}{Q}_A \stackrel{!}{U}_B \stackrel{!}{Q}_A \stackrel{!}{U}_B \stackrel{!}{Q}_B \stackrel{!}{U}_B \stackrel{!}{Q}_B \stackrel{!}{U}_B \stackrel{!}{Q}_A \stackrel{!}{U}_B \stackrel{!}{Q}_A \stackrel{!}{U}_B \stackrel{!}{Q}_B \stackrel{!}{U}_B \stackrel{!}{U}_B \stackrel{!}{Q}_A \stackrel{!}{U}_B \stackrel{!}{Q}_A \stackrel{!}{U}_B \stackrel{!}{U}_B \stackrel{!}{Q}_A \stackrel{!}{U}_B \stackrel{!}{U$$

Z. Chacko

Top divergences cancelled by non-coloured states \Rightarrow Neutral naturalness

Neutral Naturalness

• SM comes with a Twin: Higgs sector invariant under a global U(4) symmetry

Neutral Naturalness

• SM comes with a Twin: Higgs sector invariant under a global U(4) symmetry

Two-Higgs Doublet Models

• THDM (with softly broken Z₂ symmetry):

Jorge de Blas University of Granada

wo-H]	Channe			Experin	nent	Mass range	L
			-		F		[GeV]	$[\mathbf{fb}^{-1}]$
		$pp \rightarrow H_{\ell}$	$A \rightarrow bb$		CMS	[75]	[0.55; 1.2]	2.69
• THD	ſ	$gg \to H_{\rho}$	$A \to \tau \tau$		ATLAS CMS	[76] [77]	[0.2;2.25] [0.09:3.2]	36.1 12.9
		$bb \rightarrow H/$	$A \to \tau \tau$		ATLAS CMS	[76] [77]	$\frac{[0.00;0.2]}{[0.2;2.25]}$ $[0.09;3.2]$	36.1 12.9
		$pp \rightarrow H_{\ell}$	$A \to \gamma \gamma$		ATLAS	[78]	[0.2;2.7]	36.7
$= \begin{pmatrix} \varphi_i \\ \psi_{i+\phi^0+iC} \end{pmatrix}$	0-1 ($gg \to H_{\rho}$	$A \to \gamma \gamma$		CMS	[79]	[0.5;4]	35.9
$\left(\frac{v_i + \varphi_i + iG_i}{\sqrt{2}}\right)$	0 4	$gg \to H_{\rm c}$	$A \to Z\gamma [\to (\ell\ell)\gamma]$	/]	ATLAS	[45]	[0.25;2.4]	36.1
· · · /	<u>(3</u>	$gg \to H_{\rm c}$	$A \to Z\gamma$		CMS	[80]	[0.35;4]	35.9
$= \tan \beta = \frac{v_2}{2}$	ပ်	$gg \to H$	$\rightarrow ZZ[\rightarrow (\ell\ell)(\ell\ell)]$	$, \nu \nu)]$	ATLAS	[81]	[0.2;1.2]	36.1
$\equiv \tan \rho \equiv \frac{1}{v_1}$	a	$VV \to R$	$H \to ZZ[\to (\ell\ell)(\ell)]$	$(\ell, \nu \nu)]$	ATLAS	[81]	[0.2;1.2]	36.1
	Sca	$pp \to H$	$\rightarrow ZZ[\rightarrow (\ell\ell)(\nu\nu)$	·)]	CMS	[82]	[0.6; 2.5]	35.9
	0	$gg \to H$	$\rightarrow ZZ[\rightarrow (\ell\ell)(\nu\nu)]$	·)]	CMS	[83]	[0.2;0.6]	2.3
	Ö Ö	$VV \rightarrow H$	$\frac{I \to ZZ [\to (\ell\ell)(\nu)]}{I \to ZZ [\to (\ell\ell)(\nu)]}$	νν)]	CMS	[83]	[0.2;0.6]	2.3
	ar	(VV + V)	$(H) \to H \to ZZ$	$\xrightarrow{\rightarrow (\ell\ell)(\ell\ell)}$	CMS	[84]	[0.13;2.53]	12.9
bb deca	<mark>с</mark>	$pp \rightarrow H$	$\frac{\rightarrow ZZ[\rightarrow (\ell\ell)(qq)}{ZZ[\rightarrow (\ell\ell)(qq)]}$)]	CMS	[85]	[0.5;2]	12.9
ττ deca	פ	$gg \rightarrow H$	$\rightarrow ZZ [\rightarrow (\ell\ell, \nu\nu)]$	(qq)	ATLAS	[86]	[0.3;3]	36.1
🗾 μμ deca	ធ	$VV \to F$	$A \to ZZ [\to (\ell\ell, \nu)]$	$\nu)(qq)$	ATLAS	[86]	[0.3;3]	36.1
	ច	$gg \to H$	$\rightarrow WW[\rightarrow (e\nu)($	$(\mu\nu)$]	ATLAS	[87]	[0.25;4]	36.1
	, nt	$VV \to P$	$H \to WW[\to (e\nu)]$	$(\mu\nu)]$	ATLAS	[87]	[0.25;3]	36.1
.0	De	(gg+VV)	$(Y) \to H \to WW$	$\rightarrow (\ell \nu)(\ell \nu)$	CMS	[88]	[0.2;1]	2.3
	of	$gg \to H$	$\rightarrow WW[\rightarrow (\ell\nu)(e)$	[qq)]	ATLAS	[89]	[0.3;3]	36.1
5	S	$VV \rightarrow P$	$H \to WW[\to (\ell\nu)]$	(qq)]	ATLAS	[89]	[0.3;3]	36.1
.5	ch	$pp \to H$	$\rightarrow VV[\rightarrow (qq)(qq)]$	()]	ATLAS	[90]	[1.2;3]	36.7
	ar	$nn \rightarrow H$	$\rightarrow hh \rightarrow (bh)(bh)$		ATLAS	[<mark>91</mark>]	[0.3;3]	13.3
.0-	Se	<i>pp</i> 7 11	/ 1010 / (00)(00)		CMS	[92]	[0.26;1.2]	35.9
	2	$gg \rightarrow H$	$\rightarrow hh \rightarrow (bb)(bb)$		CMS	[93]	[1.2;3]	35.9
	un	$pp \rightarrow H$	$\rightarrow hh[\rightarrow (\gamma\gamma)(bb)]$)]	ATLAS	[94]	[0.275; 0.4]	3.2
	E ()	$pp \rightarrow H$	$\rightarrow hh \rightarrow (\gamma \gamma)(bb)$)	CMS	[95]	[0.25;0.9]	35.9
.0	H	$pp \rightarrow H$	$\rightarrow hh \rightarrow (bb)(\tau \tau)$	$\sum_{i=1}^{n} \left(\frac{1}{2} + \frac{1}{2} +$	CMS	[96]	[0.25; 0.9]	35.9 26
		$pp \rightarrow II$	$\frac{\rightarrow hh \rightarrow (00)(VV)}{\rightarrow hh[\rightarrow (20)(W)]}$	$\rightarrow \ell \nu \ell \nu$		[97]	$\frac{[0.20;0.9]}{[0.25:0.5]}$	30 12.2
		$gg \rightarrow II$	$ \rightarrow h \pi [\rightarrow (\gamma \gamma)(W) $	<i>vv</i>)]		[90]	[0.25,0.5]	26.1
		$\frac{gg \to A}{b\bar{b} \to A}$	$\frac{\rightarrow hZ \rightarrow (00)Z}{\rightarrow hZ \rightarrow (bh)Z}$		ATLAS	[99]	[0.2;2]	30.1 26.1
		$00 \rightarrow A$	$\neg n \square \rightarrow (00) \square$		AILAS	[99]		- 30.1
		$\overline{}$	Channel	Experimen	t N	/lass range [T	$[eV] \mid \mathcal{L} [fb^{-1}]$	
See J. Tao's	talk for		$pp \to H^{\pm} \to \tau^{\pm} \nu$	CMS	[100]	[0.2;2] [0.18:3]	14.7	
e updates on	new Hig	gs	L	ATLAS	[102]	[0.3;1]	13.2	
Boson sea	rches		$pp \to H^+ \to tb$	ATLAS	[103]	[0.2;0.3] U[1;2] 13.2	
D. Chowdhury.	O. Eperna		EP 05 (2018)		IV: 1/11.	.02095 Inc	20-001	

Jorge de Blas **University of Granada**

LHCP 2021 - Constraints on BSM from the Higgs sector June 10, 2021

Two-Higgs Doublet Models

• THDM (with softly broken Z₂ symmetry):

Jorge de Blas University of Granada

Two-Higgs Doublet Models

• THDM (with softly broken Z₂ symmetry):

Jorge de Blas University of Granada

- Light, gauge-singlet pseudo-scalar particles arising as:
 - ✓ PQ solutions to strong CP problem (the original QCD axion)
 - ✓ pNBG of spontaneously broken global symmetries in extensions of the SM, e.g. in composite Higgs models
 - Dark Matter candidates or mediators
- Leading dim \leq 6 axion interactions with SM particles

$$\mathcal{L}_{\text{eff}}^{D\leq5} = \frac{1}{2} \left(\partial_{\mu}a\right) \left(\partial^{\mu}a\right) - \frac{m_{a,0}^{2}}{2} a^{2} + \sum_{f} \frac{c_{ff}}{2} \frac{\partial^{\mu}a}{\Lambda} \bar{f}\gamma_{\mu}\gamma_{5}f + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + e^{2} C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^{2}}{s_{w}c_{w}} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^{2}}{s_{w}^{2}c_{w}^{2}} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu} ,$$

$$\mathcal{L}_{\text{eff}}^{D\geq 6} = \frac{C_{ah}}{\Lambda^2} \left(\partial_{\mu}a\right) \left(\partial^{\mu}a\right) \phi^{\dagger}\phi + \frac{C_{Zh}}{\Lambda^3} \left(\partial^{\mu}a\right) \left(\phi^{\dagger}iD_{\mu}\phi + \text{h.c.}\right) \phi^{\dagger}\phi + \dots$$

See also P. Foldenauer's talk

Jorge de Blas	
University of Granada	

- Light, gauge-singlet pseudo-scalar particles arising as:
 - ✓ PQ solutions to strong CP problem (the original QCD axion)
 - ✓ pNBG of spontaneously broken global symmetries in extensions of the SM, e.g. in composite Higgs models
 - ✓ Dark Matter candidates or mediators
- Leading dim \leq 6 axion interactions with SM particles

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \sum_{f} \frac{c_{ff}}{2} \frac{\partial^{\mu} a}{\Lambda} \bar{f} \gamma_{\mu} \gamma_{5} f + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} \quad \frac{\text{Axion decays, e.g.}}{a \to \gamma \gamma} + e^{2} C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^{2}}{s_{w}c_{w}} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^{2}}{s_{w}^{2}c_{w}^{2}} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu}, \qquad a \to \gamma \gamma$$

$$P \geq 6 \quad C_{\mu\nu} = 0 \quad \text{we are a star of the result of the term of the result of the term of t$$

$$\mathcal{L}_{\text{eff}}^{D \ge 6} = \frac{C_{ah}}{\Lambda^2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) \phi^{\dagger} \phi + \frac{C_{Zh}}{\Lambda^3} \left(\partial^{\mu} a \right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.} \right) \phi^{\dagger} \phi + \dots \qquad \mathbf{h} \to \mathbf{aa}, \ \mathbf{Za}$$

See also P. Foldenauer's talk

Jorge de Blas	
University of Granada	

• Leading dim \leq 6 axion interactions with SM particles See also P. Foldenauer's talk

$$\begin{split} \mathcal{L}_{\text{eff}}^{D\leq5} &= \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \sum_{f} \frac{c_{ff}}{2} \frac{\partial^{\mu} a}{\Lambda} \bar{f} \gamma_{\mu} \gamma_{5} f + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} & \text{Axion decays, e.g.} \\ &+ e^{2} C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^{2}}{s_{w} c_{w}} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^{2}}{s_{w}^{2} c_{w}^{2}} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu} , \end{split}$$

$$\mathcal{L}_{\text{eff}}^{D\geq 6} = \frac{C_{ah}}{\Lambda^2} \left(\partial_{\mu}a\right) \left(\partial^{\mu}a\right) \phi^{\dagger}\phi + \frac{C_{Zh}}{\Lambda^3} \left(\partial^{\mu}a\right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.}\right) \phi^{\dagger}\phi + \dots \qquad h \to aa, \ Za$$

Testable at LHC in exotic Higgs decays

Jorge de Blas University of Granada

• Leading dim \leq 6 axion interactions with SM particles See also P. Foldenauer's talk

 $\begin{aligned} \mathcal{L}_{\text{eff}}^{D\leq 5} &= \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \sum_{f} \frac{c_{ff}}{2} \frac{\partial^{\mu} a}{\Lambda} \bar{f} \gamma_{\mu} \gamma_{5} f + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} & \text{Axion decays, e.g.} \\ &+ e^{2} C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^{2}}{s_{w} c_{w}} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^{2}}{s_{w}^{2} c_{w}^{2}} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu} , \end{aligned}$

Jorge de Blas University of Granada

• Leading dim \leq 6 axion interactions with SM particles See also P. Foldenauer's talk

$$\begin{split} \mathcal{L}_{\text{eff}}^{D\leq 5} &= \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \sum_{f} \frac{c_{ff}}{2} \frac{\partial^{\mu} a}{\Lambda} \, \bar{f} \gamma_{\mu} \gamma_{5} f + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \, \tilde{G}^{\mu\nu,A} & \text{Axion decays, e.g.} \\ &+ e^{2} C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \, \tilde{F}^{\mu\nu} + \frac{2e^{2}}{s_{w} c_{w}} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \, \tilde{Z}^{\mu\nu} + \frac{e^{2}}{s_{w}^{2} c_{w}^{2}} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \, \tilde{Z}^{\mu\nu} \,, \end{split}$$

 $\mathcal{L}_{\text{eff}}^{D \ge 6} = \frac{C_{ah}}{\Lambda^2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) \phi^{\dagger} \phi + \frac{C_{Zh}}{\Lambda^3} \left(\partial^{\mu} a \right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.} \right) \phi^{\dagger} \phi + \dots \qquad \mathbf{h} \to \mathbf{aa}, \ \mathbf{Za}$

Testable at LHC in exotic Higgs decays

From ATLAS+CM Run 1 combination: Br($h \rightarrow$ BSM)<0.32 at 95% prob. (Outdated)

e.g. ATLAS Run 2 (ATLAS-CONF-2020-027): Br($h \rightarrow$ BSM)<0.19 at 95% prob.

> M. Bauer, M. Neubert, A. Thamm, JHEP 12 (2017) 044, arXiv: 1708.00443 [hep-ph]

Jorge de Blas University of Granada

Two slides on Higgs pair production and BSM

• New physics effects can enter the process in many different places, affecting the *hh* distributions, e.g. in the SMEFT:

Most of these interactions can be better measured in other processes, using SMEFT correlations, with the exception of the h³ coupling

- But from the point of view of models of naturalness, the bounds from single Higgs couplings dominate over any limit from *hh* that will be set at the (HL-)LHC
- Similarly, for models of the EWPT, large (tree-level) contrib. to $O_6 = (H^{\dagger}H)^3$ always come with other operators at the same order

Exceptions: Custodial scalar quadruplets or fermio-phobic scalar doublets
 M. Chala et al. , JHEP 07 (2018) 062

hh at (HL-)LHC could still provide some limited sensitivity to this type of scenarios

Summary

- Despite the LHC success in finding the Higgs boson, new physics beyond the Standard Model (BSM) still proves to be elusive to existing searches
- Such searches, however, provide valuable information to constraint many of the ideas that theorist have proposed to address the problems of the SM
- In particular, LHC Higgs physics provides crucial information to constrain solutions to the hierarchy problem:
 - ✓ The consistency of the Higgs couplings with the SM predictions imposes some of the strongest bounds on these scenarios
 - ✓ Direct searches for exotic decays and non-SM extra scalars keep also pushing the scale of new physics
- In this talk I have presented some of the implications of current LHC measurements of the Higgs properties on different BSM scenarios
- With the Run 3, and the future HL-LHC we are entering the LHC precision era for measurements of the Higgs properties
 - ✓ Indirect constraints will become more relevant...
 - \checkmark ...and hence also the precision with which we know the SM
 - The (SM) theory role: to keep learning from BSM it is crucial to keep improving our SM calculations!
 See B. Mistlberger's talk

Jorge de Blas University of Granada

Modified Higgs couplings: The \kappa framework

• Compact parameterisation of new physics in <u>single</u> Higgs processes:

$$egin{aligned} &(\sigma \cdot \mathrm{BR})(i
ightarrow H
ightarrow f) = \kappa_i^2 \sigma^{\mathrm{SM}}(i
ightarrow H) rac{\kappa_f^2 \Gamma^{\mathrm{SM}}(H
ightarrow f)}{\Gamma_H} \ &\Gamma_H = \Gamma_H^{\mathrm{SM}} rac{\sum_i \kappa_i^2 \mathrm{BR}_i^{\mathrm{SM}}}{1 - \mathrm{BR}_{\mathrm{inv}} - \mathrm{BR}_{\mathrm{unt}}} \end{aligned}$$

- κ_i interpreted as modified Higgs couplings + describes non-SM decays
 - ✓ No BSM calculation needed per se
 - ✓ Applicable to a good approximation to interesting NP scenarios (e.g. Composite Higgs, MSSM)
 - ✓ Limited to single Higgs processes and total rates (no kinematics)
 - ✓ No consistent Lagrangian/EFT interpretation in the general case (i.e. with general $\kappa_{g,\gamma,Z\gamma}$)

Modified Higgs couplings: The κ **framework**

• Fits to LHC Higgs observables: Run 1 + Run 2 (~36-140 fb⁻¹)

	Custodial +	Universal fermion i	nteraction	S
	Fit result	95% Prob.	Corre	lations
κ_V	$1.02 {\pm} 0.02$	[0.99, 1.06]	1.00	
κ_{f}	$0.96{\pm}0.03$	[0.89, 1.02]	0.36	1.00

	Fit result	95% Prob.
κ_W	$1.03 {\pm} 0.04$	[0.95, 1.10]
κ_Z	$0.99{\pm}0.04$	[0.90, 1.07]
κ_t	$0.98{\pm}0.04$	[0.89, 1.06]
κ_b	$0.96{\pm}0.08$	[0.80, 1.12]
κ_{μ}	$1.02{\pm}0.18$	[0.65, 1.38]
$\stackrel{\cdot}{\kappa_{ au}}$	$0.90{\pm}0.07$	[0.77, 1.04]

Non custodial + non universal fermion interaction

+ independent κ for rad. processes

	Fit result	95% Prob.
κ_W	$1.05{\pm}0.04$	[0.96 , 1.13]
κ_Z	$0.99{\pm}0.04$	[0.89 , 1.07]
κ_g	$1.01{\pm}0.05$	[0.91 , 1.11]
κ_γ	$1.04{\pm}0.05$	[0.94 , 1.13]
$\kappa_{Z\gamma}$	$1.29{\pm}0.40$	[0.39 , 2.04]
κ_t	$0.94{\pm}0.06$	[0.82 , 1.05]
κ_b	$0.99{\pm}0.09$	[0.82 , 1.17]
κ_{μ}	$1.02{\pm}0.19$	[0.64 , 1.38]
$\kappa_{ au}$	$0.93{\pm}0.07$	[0.79 , 1.08]

Two-Higgs Doublet Models

$$\Phi_1 = \begin{bmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + S_1 + i G^0) \end{bmatrix}, \qquad \Phi_2 = \begin{bmatrix} H^+ \\ \frac{1}{\sqrt{2}} (S_2 + i S_3) \end{bmatrix},$$

Physical CP-even neutral scalars

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{bmatrix} \cos \tilde{\alpha} & \sin \tilde{\alpha} \\ -\sin \tilde{\alpha} & \cos \tilde{\alpha} \end{bmatrix} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix}$$

Jorge de Blas University of Granada