Results on soft QCD at LHC and Tevatron Leszek Adamczyk AGH - UST Cracow Large Hadron Collider Physics 2021 #### Soft QCD #### Soft QCD: - Processes involving strong interaction characterized by low momentum transfer (soft) - Low transverse momenta phenomena \rightarrow effective α_s large \rightarrow perturbative calculations not applicable \rightarrow predictions based on phenomenological assumptions #### Selected results on soft QCD: - Elastic scattering - Soft rapidity gap survival probability - Underlying events (UE) - Hadronization (soft particle production and correlations) - Soft hadron-hadron interactions (via correlations) # Elastic scattering: Observation of Odderon At high energy pp and $p\bar{p}$ elastic collisions dominated by colorless multi-gluon exchanges: - C-even exchange amplitudes identical for pp and $p\bar{p}$. - C-odd exchange amplitudes different sign for pp and $p\bar{p}$. - Odderon: C-odd gluon compound. In leading order QCD confirmed as C-odd 3 gluon exchange. - Odderon exchange predicts differences in elastic $d\sigma/dt$ for pp and $p\bar{p}$ manifesting i.a. by filling in the dip. D0 and TOTEM elastic scattering data: - D0 measured elastic $p\bar{p} d\sigma/dt$ at 1.96 TeV. - TOTEM measured elastic $pp \ d\sigma/dt$ at: 2.76, 7, 8 and 13 TeV. - pp elastic dσ/dt characterized by a diffractive minimum and a secondary maximum. • Extrapolate "characteristic" points of TOTEM $d\sigma/dt$ to predict $pp\ d\sigma/dt$ at D0 energy. # Elastic scattering Observation of Odderon Comparison of extrapolated $pp \ d\sigma/dt$ with $p\bar{p}$ D0 data: - χ^2 -test of difference: 3.4 σ significance for Odderon exchange - Significance confirmed by a combined Kolmogorov-Smirnov and normalization test Previous evidence from TOTEM (EPJC (2019) 785): - Using very low |t| data at 13 TeV TOTEM measured σ_{tot} and ρ (ratio of real to imaginary part of elastic amplitude at t=0). - Combination of the measured ρ and σ_{tot} values not compatible with any set of models without Odderon exchange at 4.6 σ significance. Combination of independent evidences of Odderon exchange from TOTEM ρ and σ_{tot} with pp and $p\bar{p}$ comparison excludes avaiable models without Odderon at 5.2-5.7 σ leading to observation of Odderon # Soft gap(proton) survival probability Observed rate of large rapidity gaps = $\langle |S|^2 \rangle$ theoretically calculated rate - gap can separate two final state objects (like jets) - gap can separate central state from beam particle (photoproduction, single diffraction) - gap can separate central exclusive state (dilepton) from beam particle on each side of the system - ullet in $\gamma-\gamma$ fusion proton survival probability can be also interpreted as absorption effect due to the finite-size of the γ sources $\langle |S|^2 \rangle$ is the probability of a given gap not to be filled by debris originating from the soft re-scattering of the spectator partons or absorption probability which suppress the rate of intact protons. ### Soft gap survival probability: jet-gap-jet - Central gap due to the color-singlet exchange (CSE) - \bullet f_{CSE} fraction of CSE events to inclusive - RMK: constant $|S|^2 = 10\%$ to fit data - EEIM: constant $|S|^2 = 1.2\%$ to fit data - EEIM: dynamical modeling of |S|² (Soft Color Interaction - SCI) tuned to fit 7 TeV data - Data and SCI support weak $|S|^2$ dependence on p_T^{jet} RMK: Phys. Rev. D 83, 034036 - EEIM: PLB 524 (2002) 273 different treatment of next-to-leading logarithmic - corrections in the BFKL evolution CMS and TOTEM: CMS-SMP-19-006 : CERN-EP-2020-229 details: R. Gupta, Monday, 7 June, 17:18 ### Soft gap survival probability: jet-gap-jet - RMK and EEIM (without SCI) yield a decreasing f_{CSE} with increasing $\Delta \eta_{jj}$ in contrast to data. - EEIM (with SCI) correctly describe $f_{CSE}(\Delta \eta_{jj})$. - RMK is consistent with the data at $1 < \Delta \Phi_{jj} < 3$ but underestimate the the data by near $\Delta \Phi_{jj} = \pi$ and at $\Delta \Phi_{jj} < 1$. - $|S|^2$ larger for well separated jets in rapidity - Interesting to study $|S|^2$ in $\Delta \eta_{jj} \Delta \Phi_{jj}$ space. # Soft gap survival probability: jet-gap-jet #### proton-gap-jet-gap-jet - \bullet $|S|^2$ should be larger in the presence of second gap. - measure f_{CSE} events with intact protons in TOTEM. - f_{CSE} in events with an intact proton is 2.91 ± 0.70 (stat)+1.02-0.94(syst) times larger compared to inclusive dijet - suggest that a gap is more likely to form or survive in the presence of another gap f_{CSE} vs. energy - ullet a larger number of soft interactions with increasing \sqrt{s} - but no further decrease of the f_{CSE} values starting from the 7 TeV CMS and TOTEM: CMS-SMP-19-006; CERN-EP-2020-229 details: R. Gupta, Monday, 7 June, 17:18 ## Soft gap(proton) survival probability: photon-photon fusion - Exclusive dilepton production pp → p(γγ → I⁺I⁻)p/p^{*} with forward proton measured in proton spectrometer - Survival factor related to finite size effects of colliding protons DS (Phys. Lett. B741, 66 (2015)) or soft proton—proton interactions SuperChic 4 (Eur.Phys.J.C 80 (2020) 10, 925) | $\sigma_{\rm Herwig+Lpair} \times S_{\rm surv}$ | $\sigma_{ee+p}^{\mathrm{fid.}}$ [fb] | $\sigma_{\mu\mu+p}^{\mathrm{fid.}}$ [fb] | |---|--------------------------------------|--| | $S_{ m surv} = 1$ | 15.5 ± 1.2 | 13.5 ± 1.1 | | $S_{\rm surv}$ using Refs. [31,30] | 10.9 ± 0.8 | 9.4 ± 0.7 | | SuperChic 4 [94] | 12.2 ± 0.9 | 10.4 ± 0.7 | | Measurement | 11.0 ± 2.9 | 7.2 ± 1.8 | - HERWIG: elastic $pp \rightarrow p(\gamma \gamma \rightarrow l^+ l^-)p$ scaled by $\langle |S|^2(m_{ll}) \rangle = 0.75(DS)$. - LPAIR: single dissociative $pp \rightarrow p(\gamma\gamma \rightarrow l^+l^-)p^*$ additionally scaled by 0.85 (Eur. Phys. J. C76(2016) 255) - \bullet SuperChic 4 includes full kinematic dependence on $|\mathcal{S}|^2$ - Forward proton detectors important for future measurements to better separate elastic, single and double dissociative contributions. ### Soft particle production: Production of light-flavor hadrons The high-precision measurements of the identified p_T spectra: crucial inputs for tuning of Monte Carlo generators and to improve the understanding of particle production mechanisms. - PYTHIA 8, PYTHIA 6, and EPOS-LHC give similar descriptions of the data at both 7 and 13 TeV. - PYTHIA 8 generally give softer p_T spectra than observed at low p_T attributed to difficulties at describing diffractive processes. - PYTHIA 6 and EPOS-LHC better describe soft particle production. # Soft particle production: Charge particle densities The energy and multiplicity dependence of the charged-particle pseudorapidity density can be used as an input for improving understanding of Multiple Parton Interactions. - The yields of charged particles in the highest multiplicity classes for are up to about a factor of 5 higher with respect to the inclusive measurements - Phenomenological power law fit describes the energy evolution. - The average pseudorapidity density at midrapidity as a function of the energy increases for the highest multiplicity classes. - It may arise from the increase of the MPI cross sections with the centre-of-mass energy # Soft particle production: Forward charged particle production Fundamental measurement for (soft-)QCD, generator tuning, and astroparticle physics - Generators mostly overestimate forward density. - Best agreement with EPOS-LHC ## Strong interaction of hadrons: Correlation function • Scattering parameters obtained from HI collisions(mainly sensitive to elastic processes) describes $\Lambda - \bar{\Lambda}$ but underestimates $p - \bar{\Lambda}$ below 200 MeV/c. Data indicates a different contribution of annihilation channels to the two systems containing strange hadrons. ## Underlying event :Transverse plane activity - UE activity quantified by the self-normalized charged particle multiplicity R_T . - First measurements of (anti)deuteron production in several R_T classes. - Flat B_2 vs. p_T/A suggests simple coalescence picture, both in towards and transverse regions. - ullet Similar B_2 in towards and transverse regions, contrary to expectation of large B_2 for small distances # Summary - Soft-QCD processes must be measured to help constrain phenomenological models and to tune Monte Carlos - Precise models and well tuned Monte Carlos necessary to extract process of interest from large pile-up proton-proton interactions - Many recent results including: - Odderon observation - Measurements sensitive to gap survival probability - Underlying events - Soft particle production and correlations - Many more new measurements not covered in this presentation.