Results on soft QCD at LHC and Tevatron

Leszek Adamczyk

AGH - UST Cracow

Large Hadron Collider Physics 2021

Soft QCD

Soft QCD:

- Processes involving strong interaction characterized by low momentum transfer (soft)
- Low transverse momenta phenomena \rightarrow effective α_s large \rightarrow perturbative calculations not applicable \rightarrow predictions based on phenomenological assumptions

Selected results on soft QCD:

- Elastic scattering
- Soft rapidity gap survival probability
- Underlying events (UE)
- Hadronization (soft particle production and correlations)
- Soft hadron-hadron interactions (via correlations)

Elastic scattering: Observation of Odderon

At high energy pp and $p\bar{p}$ elastic collisions dominated by colorless multi-gluon exchanges:

- C-even exchange amplitudes identical for pp and $p\bar{p}$.
- C-odd exchange amplitudes different sign for pp and $p\bar{p}$.
- Odderon: C-odd gluon compound.
 In leading order QCD confirmed as C-odd 3 gluon exchange.
- Odderon exchange predicts differences in elastic $d\sigma/dt$ for pp and $p\bar{p}$ manifesting i.a. by filling in the dip.

D0 and TOTEM elastic scattering data:

- D0 measured elastic $p\bar{p} d\sigma/dt$ at 1.96 TeV.
- TOTEM measured elastic $pp \ d\sigma/dt$ at: 2.76, 7, 8 and 13 TeV.
- pp elastic dσ/dt characterized by a diffractive minimum and a secondary maximum.

• Extrapolate "characteristic" points of TOTEM $d\sigma/dt$ to predict $pp\ d\sigma/dt$ at D0 energy.

Elastic scattering Observation of Odderon

Comparison of extrapolated $pp \ d\sigma/dt$ with $p\bar{p}$ D0 data:

- χ^2 -test of difference: 3.4 σ significance for Odderon exchange
- Significance confirmed by a combined Kolmogorov-Smirnov and normalization test

Previous evidence from TOTEM (EPJC (2019) 785):

- Using very low |t| data at 13 TeV TOTEM measured σ_{tot} and ρ (ratio of real to imaginary part of elastic amplitude at t=0).
- Combination of the measured ρ and σ_{tot} values not compatible with any set of models without Odderon exchange at 4.6 σ significance.

Combination of independent evidences of Odderon exchange from TOTEM ρ and σ_{tot} with pp and $p\bar{p}$ comparison excludes avaiable models without Odderon at 5.2-5.7 σ leading to observation of Odderon

Soft gap(proton) survival probability

Observed rate of large rapidity gaps = $\langle |S|^2 \rangle$ theoretically calculated rate

- gap can separate two final state objects (like jets)
- gap can separate central state from beam particle (photoproduction, single diffraction)
- gap can separate central exclusive state (dilepton) from beam particle on each side of the system
- ullet in $\gamma-\gamma$ fusion proton survival probability can be also interpreted as absorption effect due to the finite-size of the γ sources

 $\langle |S|^2 \rangle$ is the probability of a given gap not to be filled by debris originating from the soft re-scattering of the spectator partons or absorption probability which suppress the rate of intact protons.

Soft gap survival probability: jet-gap-jet

- Central gap due to the color-singlet exchange (CSE)
- \bullet f_{CSE} fraction of CSE events to inclusive
- RMK: constant $|S|^2 = 10\%$ to fit data
- EEIM: constant $|S|^2 = 1.2\%$ to fit data
- EEIM: dynamical modeling of |S|² (Soft Color Interaction - SCI) tuned to fit 7 TeV data
- Data and SCI support weak $|S|^2$ dependence on p_T^{jet} RMK: Phys. Rev. D 83, 034036
- EEIM: PLB 524 (2002) 273

 different treatment of next-to-leading logarithmic
- corrections in the BFKL evolution

 CMS and TOTEM: CMS-SMP-19-006 : CERN-EP-2020-229 details: R. Gupta, Monday, 7 June, 17:18

Soft gap survival probability: jet-gap-jet

- RMK and EEIM (without SCI) yield a decreasing f_{CSE} with increasing $\Delta \eta_{jj}$ in contrast to data.
- EEIM (with SCI) correctly describe $f_{CSE}(\Delta \eta_{jj})$.

- RMK is consistent with the data at $1 < \Delta \Phi_{jj} < 3$ but underestimate the the data by near $\Delta \Phi_{jj} = \pi$ and at $\Delta \Phi_{jj} < 1$.
- $|S|^2$ larger for well separated jets in rapidity
- Interesting to study $|S|^2$ in $\Delta \eta_{jj} \Delta \Phi_{jj}$ space.

Soft gap survival probability: jet-gap-jet

proton-gap-jet-gap-jet

- \bullet $|S|^2$ should be larger in the presence of second gap.
- measure f_{CSE} events with intact protons in TOTEM.

- f_{CSE} in events with an intact proton is 2.91 ± 0.70 (stat)+1.02-0.94(syst) times larger compared to inclusive dijet
- suggest that a gap is more likely to form or survive in the presence of another gap

f_{CSE} vs. energy

- ullet a larger number of soft interactions with increasing \sqrt{s}
- but no further decrease of the f_{CSE} values starting from the 7 TeV

CMS and TOTEM: CMS-SMP-19-006; CERN-EP-2020-229 details: R. Gupta, Monday, 7 June, 17:18

Soft gap(proton) survival probability: photon-photon fusion

- Exclusive dilepton production pp → p(γγ → I⁺I⁻)p/p^{*} with forward proton measured in proton spectrometer
- Survival factor related to finite size effects of colliding protons DS (Phys. Lett. B741, 66 (2015)) or soft proton—proton interactions SuperChic 4 (Eur.Phys.J.C 80 (2020) 10, 925)

$\sigma_{\rm Herwig+Lpair} \times S_{\rm surv}$	$\sigma_{ee+p}^{\mathrm{fid.}}$ [fb]	$\sigma_{\mu\mu+p}^{\mathrm{fid.}}$ [fb]
$S_{ m surv} = 1$	15.5 ± 1.2	13.5 ± 1.1
$S_{\rm surv}$ using Refs. [31,30]	10.9 ± 0.8	9.4 ± 0.7
SuperChic 4 [94]	12.2 ± 0.9	10.4 ± 0.7
Measurement	11.0 ± 2.9	7.2 ± 1.8

- HERWIG: elastic $pp \rightarrow p(\gamma \gamma \rightarrow l^+ l^-)p$ scaled by $\langle |S|^2(m_{ll}) \rangle = 0.75(DS)$.
- LPAIR: single dissociative $pp \rightarrow p(\gamma\gamma \rightarrow l^+l^-)p^*$ additionally scaled by 0.85 (Eur. Phys. J. C76(2016) 255)
- \bullet SuperChic 4 includes full kinematic dependence on $|\mathcal{S}|^2$
- Forward proton detectors important for future measurements to better separate elastic, single and double dissociative contributions.

Soft particle production: Production of light-flavor hadrons

The high-precision measurements of the identified p_T spectra: crucial inputs for tuning of Monte Carlo generators and to improve the understanding of particle production mechanisms.

- PYTHIA 8, PYTHIA 6, and EPOS-LHC give similar descriptions of the data at both 7 and 13 TeV.
- PYTHIA 8 generally give softer p_T spectra than observed at low p_T attributed to difficulties at describing diffractive processes.
- PYTHIA 6 and EPOS-LHC better describe soft particle production.

Soft particle production: Charge particle densities

The energy and multiplicity dependence of the charged-particle pseudorapidity density can be used as an input for improving understanding of Multiple Parton Interactions.

- The yields of charged particles in the highest multiplicity classes for are up to about a factor of 5 higher with respect to the inclusive measurements
- Phenomenological power law fit describes the energy evolution.
- The average pseudorapidity density at midrapidity as a function of the energy increases for the highest multiplicity classes.
- It may arise from the increase of the MPI cross sections with the centre-of-mass energy

Soft particle production: Forward charged particle production

Fundamental measurement for (soft-)QCD, generator tuning, and astroparticle physics

- Generators mostly overestimate forward density.
- Best agreement with EPOS-LHC

Strong interaction of hadrons: Correlation function

• Scattering parameters obtained from HI collisions(mainly sensitive to elastic processes) describes $\Lambda - \bar{\Lambda}$ but underestimates $p - \bar{\Lambda}$ below 200 MeV/c.

 Data indicates a different contribution of annihilation channels to the two systems containing strange hadrons.

Underlying event :Transverse plane activity

- UE activity quantified by the self-normalized charged particle multiplicity R_T .
- First measurements of (anti)deuteron production in several R_T classes.
- Flat B_2 vs. p_T/A suggests simple coalescence picture, both in towards and transverse regions.
- ullet Similar B_2 in towards and transverse regions, contrary to expectation of large B_2 for small distances

Summary

- Soft-QCD processes must be measured to help constrain phenomenological models and to tune Monte Carlos
- Precise models and well tuned Monte Carlos necessary to extract process of interest from large pile-up proton-proton interactions
- Many recent results including:
 - Odderon observation
 - Measurements sensitive to gap survival probability
 - Underlying events
 - Soft particle production and correlations
- Many more new measurements not covered in this presentation.

