

Physics at HL-LHC and Beyond

Sergo Jindariani (Fermilab) LHCP June 12th, 2021

Outline

- Highlights of physics at High Luminosity LHC
- Post-LHC Colliders
- Challenges of detectors for future colliders
- Summary

This is not a comprehensive, quantitative review of future physics (impossible in 20 mins), rather an attempt to lay out the big picture using personal choices

Collider Landscape

LHC + HL-LHC is the largest **pp** dataset for the next few decades

Variety of post-LHC colliders proposed globally

Pursuit for New Physics

- The LHC will deliver 3 ab⁻¹ of data over the next 20 years
 - Incredibly rich dataset (x20 more than we have now)
 - But the doubling size is becoming longer → slower gains in many direct searches for BSM physics
- Precision to probe New Physics indirectly:
 - Higgs boson a particle like no other
- BSM processes with small rates and challenging final states (e.g. Higgsinos in SUSY)
- Previously unexplored signatures (e.g. highly boosted, longlived)

Rapidly falling cross-section

Higgs Couplings

New physics can modify Higgs couplings to SM particles

arXiv:1209.0040 arXiv:1210.3342

How big are the modifications ?

• Different physics models considered in the Higgs Working Group report

>	Model	κ_V	κ_b	κ_{γ}	
	Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
	$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	
	Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$	
	Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
	Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

- M_{NP} ~ 1 TeV and mixing angles satisfy precision electroweak fits
- Typical deviation of O(few %)
- Target 1% accuracy

ativ. 00.00

Higgs Couplings at HL-LHC

Uncertainty assumptions:

- Data statistics as sqrt(L)
- Theory uncertainties halved
- Detector limitations remain constant

Precision on kappas of 2-4% can be reached with 3 ab⁻¹ for the non-statistically dominated modes

Measurements become systematically limited rather quickly

Higgs to Unknown

Run-2 Limit ~20% @ 95%CL (dominated by VBF)

CMS projection for VBF BR(inv): < 3.8% at 95% Sensitive to E_T^{miss} thresholds

Plethora of SM Measurements

SUSY (as an example of BSM)

Long Lived at HL-LHC

- Disappearing track targets very small mass splitting
- E.g. Higgsino/Wino motivated
- Connection with Dark Matter

Things I did not talk about

- Differential measurements
- Top mass, properties, FCNC, etc
- Heavy flavor, CKM unitarity tests
- Prospects for B-anomalies
- Hadron Spectroscopy
- PDFs
- Heavy lon program

• A very exciting and rich physics program!

Beyond the LHC

- Electron-positron colliders to make precision measurements of the SM:
 - CepC, CLIC, FCC-ee, ILC
 - Produce Higgs events in large quantities
 - Collider colorless particles \rightarrow smaller backgrounds
- Proton-proton colliders with energy above LHC for extended reach to BSM (FCC-hh, SppC)
- Can Muon Colliders do both?
- ESPP gives the preferred direction for future collider(s) at CERN:
 - 100 km ring with e+e- Higgs factory followed by a 100 TeV proton-proton collider in the same tunnel

Higgs Precision

FCC CDR

Collider	HL-LHC 3	ILC ₂₅₀ 2	CLIC ₃₈₀	LEP3 ₂₄₀ 3	CEPC ₂₅₀ 5	FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab ⁻¹)						5240	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{ m H}/\Gamma_{ m H}~(\%)$	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}~(\%)$	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}~(\%)$	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}~(\%)$	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{ m H au au}/g_{ m H au au}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
$\delta g_{ m Hmm}/g_{ m H\mu\mu}$ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{ m H\gamma\gamma}/g_{ m H\gamma\gamma}$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	_	_	_	_	_	_	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

Sub % precision for most couplings There is much more than Higgs at the e+e- colliders...

Higgs Self Coupling

$$V_{\rm h} = \frac{m_h^2}{2}h^2 + (1 + \kappa_3)\lambda_{hhh}^{\rm SM}vh^3 + \frac{1}{4}(1 + \kappa_4)\lambda_{hhhh}^{\rm SM}h^4$$

k₃ needs higher energies! Precision from 50% at HL-LHC down to 5% (FCC)

🛟 Fermilab

100 TeV pp Collider (FCC-hh example)

• Direct BSM Reach:

- Strongly produced resonances \rightarrow up to 40 TeV
- Wino/Higgsino like DM up to 4 TeV/1 TeV
- Leptoquarks up to 10-12 TeV

• Higgs

- Improved determination of couplings
- Trilinear couplings, potential access to quartic coupling
- Invisible decay 10⁻⁴
- Rich top and flavor physics program: 10¹² top quarks 10¹⁷ bottom quarks

Muon Collider: Higgs

- Colliding elementary, colorless particles (alike electrons)
 - No synchrotron radiation compared to $e+e- \rightarrow$ can reach high energies
 - Large beam induced backgrounds further studies and mitigation strategies needed

Muon Collider: BSM

Colored particles: 10 TeV mumu ~ 70 TeV pp Colorless particles 10 TeV mumu ~ 140 TeV pp

DM reach via disappearing track rivals FCC-hh, covers thermal target

Detector Challenges

- Future Collider detectors face challenges
- Electron-positron: high precision (low mass) Si tracking, 3D imaging and/or dual readout calorimetry, control of systematics
- Proton-proton: radiation-hard tracking and calorimetry, large bore solenoid, high granularity and precision timing for pile-up rejection, challenging data rates
- Muon Colliders: most of the above

Summary and Outlook

- HL-LHC will provide the largest pp dataset for decades
 - Few % level Higgs couplings precision
 - Significantly advance BSM searches, in particular those with small x-sections and unconventional signatures
 - Very rich physics program!
- Future Colliders will greatly advance our understanding of Nature
 - Improve precision and energy reach by ~an order of magnitude wrt to the LHC
 - Big projects take time to realize, now is the time to get engaged
- Collider physics has yielded many discoveries. History shows that will likely do better than we think today. Look forward to many more discoveries to come!

