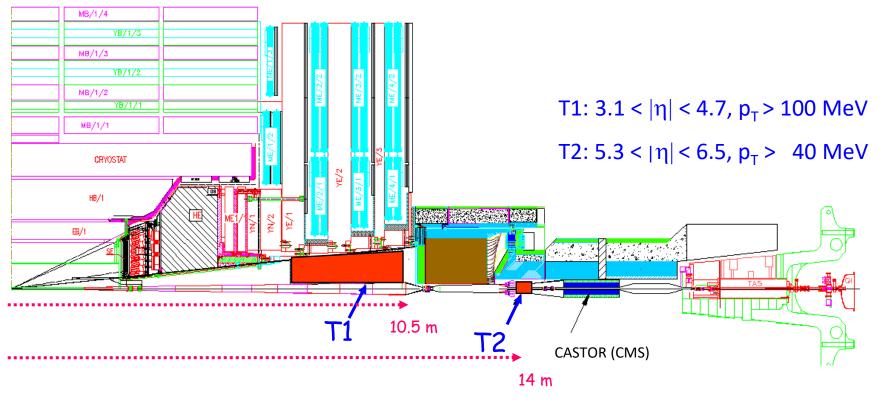
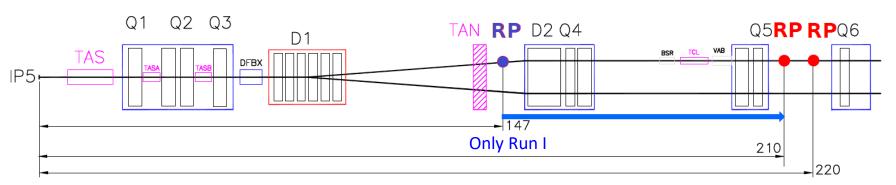


The first experimental observation of odderon exchange

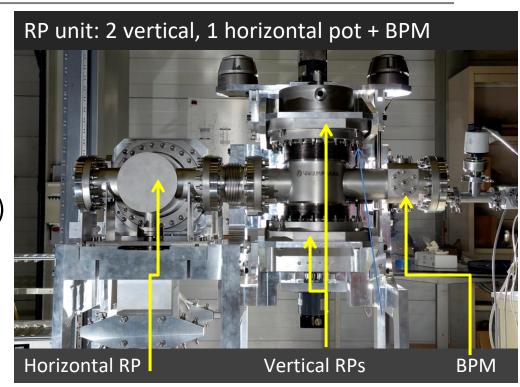
Frigyes Nemes on behalf of the D0 and TOTEM experiments CERN*

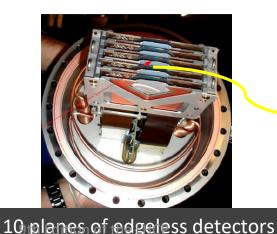
9th Edition of the LHC Conference

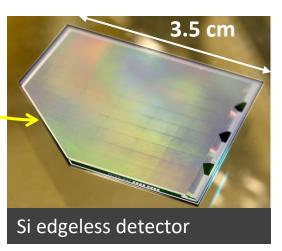

Paris, France 2021, June 7 – 12

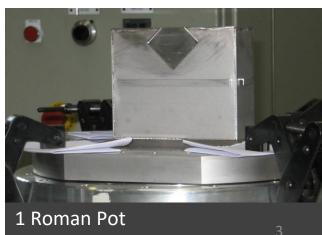

*Also at Wigner RCP, Budapest, Hungary
Szent István Egyetem Károly Róbert Campus, Gyöngyös

Experimental layout of the TOTEM experiment (LHC Run III)

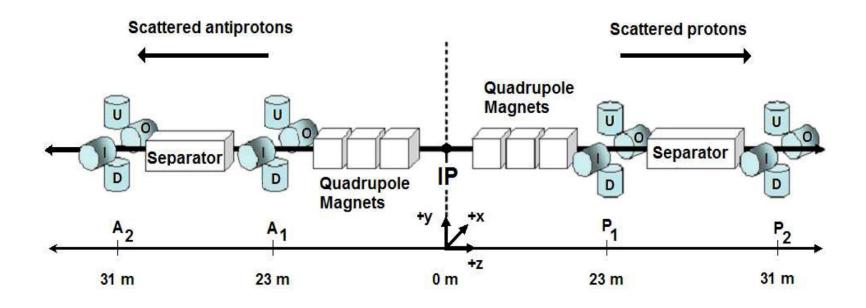




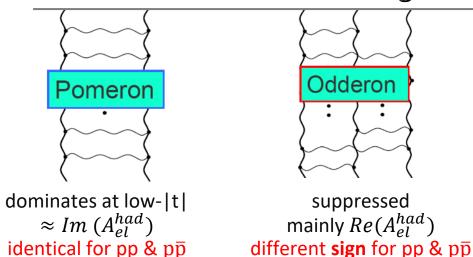

The Roman Pot (RP) stations of the TOTEM experiment


- Two RP stations at 210 and 220 m from the IP contain measuring planes separated by 10 and 5 m respectively
- Unit: 3 moveable RP to approach the beam and detect very small proton scattering angles (few μrad)
- BPM: precise position rel. to beam
- Overlapping detectors: relative alignment (10 μm inside unit among 3 RPs)

7-12/06/2021



Experimental layout of the D0 experiment (Tevatron, Fermilab)



- Elastic $\overline{p}p\ d\sigma/dt$ measurements: measure both the intact $\overline{p}\ \&\ p$ in D0 Roman Pots at 23 31 m from IP with scintillating fibre detectors
- Measurement at \sqrt{s} = 1.96 TeV: PRD 86 (2012) 012009.

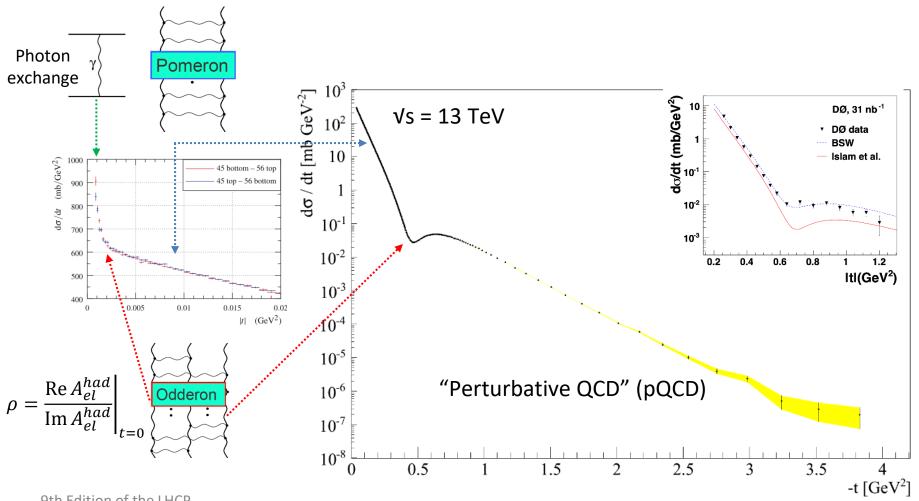
Elastic scattering: multi-gluon exchanges

Elastic hadron-hadron scattering at very highenergies: **colourless** multi-gluon t-channel exchanges

- @ TeV-scale: gluon exchanges dominate \Rightarrow pp and $p\bar{p}$ difference due to C-odd exchange
- gluonic compounds: colourless gluon combinations bound sufficiently strongly not to interact with individual p/\bar{p} partons

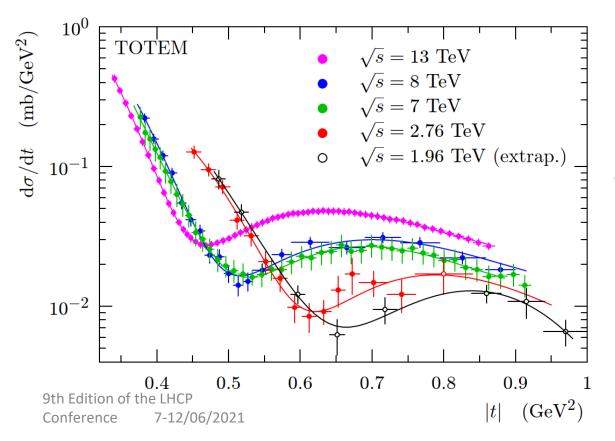
Odderon / C-odd gluon compound:

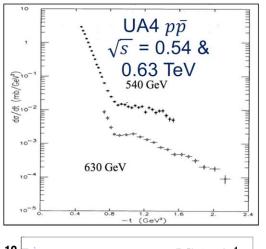
- C-odd exchange contribution predicted in Regge-theory
 L. Lukaszuk & B. Nicolescu,
 Lett. Nuovo Cim. 8 (1973) 405
 - Confirmed in QCD as C-odd exchange of 3 (or odd #) gluons at leading order J. Bartels, Nucl. Phys. B 175 (1980) 365; J. Kwiecinski & M. Praszlowics Phys. Lett. B 94 (1980) 413.
 - Searched for last 50 years, experimental evidence so far missing

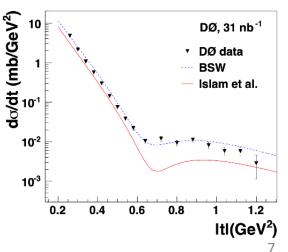


Sensitive to C-odd exchange:

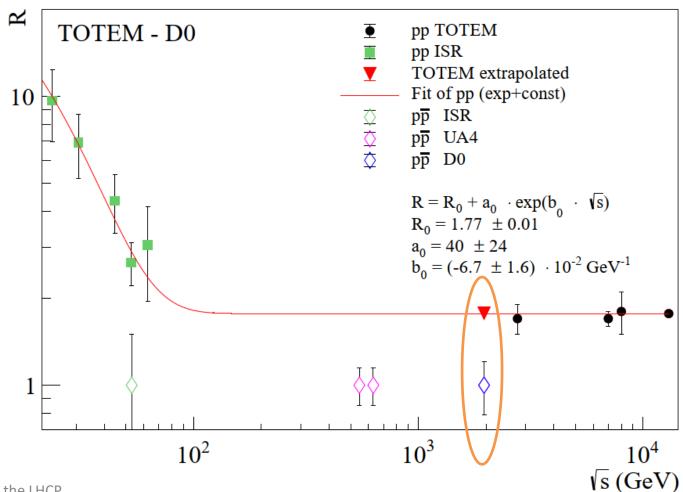
- "Coulomb-nuclear interference" (CNI) region ρ
- Diffractive minimum ("dip"): $Im(A_{el}^{had})$ suppressed w.r.t. $Re(A_{el}^{had})$!





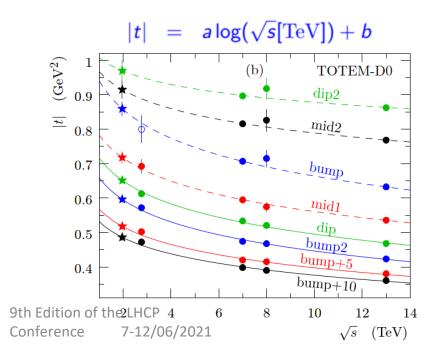

Strategy to compare pp and $p\bar{p}$ data sets

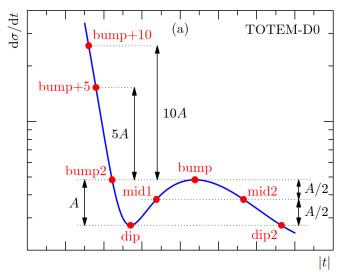
- At TeV-scale $pp\ d\sigma/dt$ characterized by a diffractive minimum ("dip") & a secondary maximum ("bump")
- @TeV scale: persistency of dip & bump for pp, absence of dip & bump for $\overline{p}p$
- $p \overline{p} \ d\sigma/dt$ characterized only by a "kink"

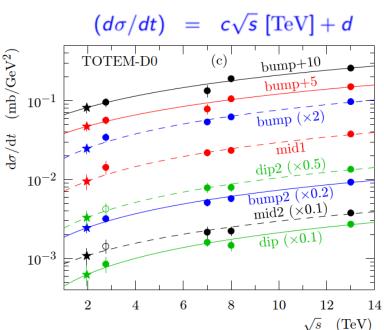


The bump over dip ratio R

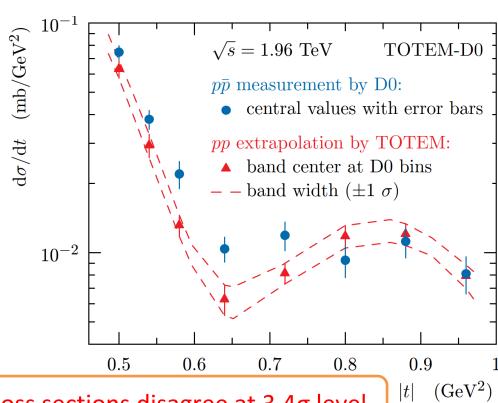
- > 3σ difference between $pp \& \overline{p}p @ s = 1.96$ TeV (assuming flat behaviour above $\sqrt{s} \sim 100$ GeV)
- For $\overline{p}p$ R estimate, use $d\sigma/dt$ of t-bins close to expected pp bump & dip position






Extrapolation of pp cross-sections

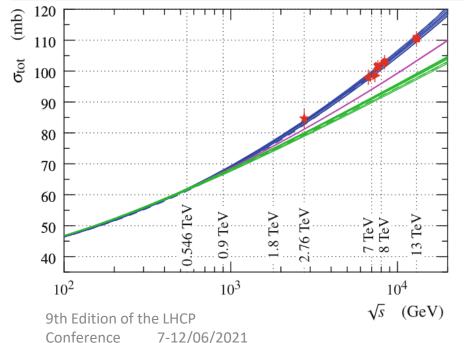
- Extrapolate 8 characteristic points (both their $d\sigma/dt \ \& \ t$) in dip-bump region of the pp elastic $d\sigma/dt \ @ \ 2.76, 7, 8 \ \& \ 13 \ TeV$ to $1.96 \ TeV \implies pp$ elastic $d\sigma/dt$ points @ $1.96 \ TeV$
- Alternative functional forms tested: adequate fits provide consistent values within uncertainties

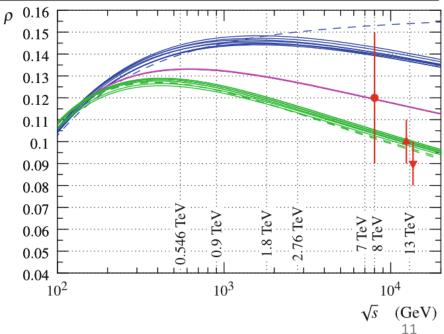

Comparison $pp \& \bar{pp}$ at $\sqrt{s} = 1.96 \text{ TeV}$

- The extrapolated pp cross-section is normalized to the measured $\bar{p}p$ cross-section by requiring the optical points (dsigma/dt @ t = 0) to be equal
- Extrapolated pp points fitted using a double-exponential to provide $pp\ d\sigma/dt$ values @D0 measured|t|-values. Excellent fits @ 2.76, 7, 8,13 TeV (backup sl.)
- MC used to determine $pp\ d\sigma/dt$ uncertainties @ D0 measured |t|-values

Uncertainties of *pp* data points @ D0 measured |t|-values strongly correlated; full covariance matrix used

Significance confirmed by a combined Kolmogorov-Smirnov & normalization test


 χ^2 test: pp & $p\bar{p}$ cross sections disagree at 3.4 σ level



Previous evidence from pp ρ and σ_{tot}

- Using very low|t| TOTEM data @ \sqrt{s} = 13 TeV: ρ = 0.09 ± 0.01 (TOTEM, EPJC (2019) 785)
- Unable to describe TOTEM ρ & $\sigma_{\rm tot}$ measurements without adding colourless C-odd exchange (comparison to COMPETE predictions shown below)

Combining with pp ρ and σ_{tot} evidence

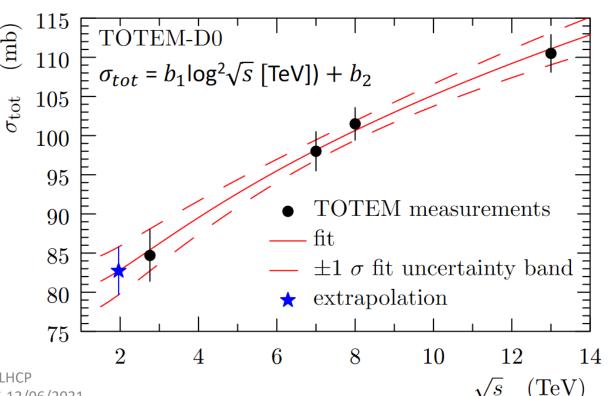
- Combine independent evidence of colourless C-odd exchange from TOTEM ρ & $\sigma_{\rm tot}$ measurements in a completely different |t|-domain with evidence from the pp & $\overline{p}p$ comparison
- Compared to all the COMPETE models, the TOTEM ρ & $\sigma_{\rm tot}$ measurement provide an odderon evidence between 3.4 and 4.6 σ , giving a total significance between 5.3 and 5.7 σ for t-channel exchange of a colourless C-odd gluonic compound (odderon) when combined
- with the TOTEM-D0 result.Combination excludes models(*) without C-odd exchange@ $5.2 5.7\sigma \Rightarrow$ observation of colourless C-odd gluonic compound("odderon")

* COMPETE Coll., PRL 89 (2002) 201801; Durham group, PLB 748 (2018) 192.

Conclusions

- Data-driven comparison between $\overline{p}p$ (D0 @ $\forall s$ = 1.96 TeV) & pp (TOTEM @ $\forall s$ = 2.76, 7, 8, 13 TeV) elastic $d\sigma/dt$ data-FERMILAB-PUB-20-568-E; CERN-EP-2020-236, arXiv:2012.03981
- Extrapolate "characteristic" points of elastic $pp\ d\sigma/dt$ to predict elastic $pp\ d\sigma/dt$ @ $\forall s$ = 1.96 TeV
- Elastic pp and $\overline{p}p$ cross sections differ @ 3.4 σ at $\forall s$ = 1.96 TeV \Longrightarrow evidence of t-channel exchange of a colourless C-odd gluonic compound i.e. odderon
- Combined with TOTEM ρ & total cross section results \Rightarrow 5.2 5.7 σ & thus first experimental observation of a colourless C-odd gluonic compound i.e. odderon
- Major discovery @ LHC & Tevatron

Backup slides

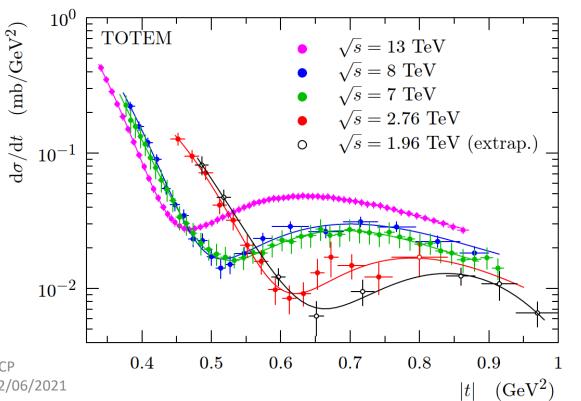


Normalization of pp cross-sections

- $pp \sigma_{tot}$ @ 1.96 TeV estimated from $pp \sigma_{tot}$ @ 2.76, 7, 8 & 13 TeV
- OP $(d\sigma/dt|_{t=0})$ of pp consistent with OP of $\overline{p}p$ data
- Normalize $pp\ d\sigma/dt$ to a common OP with $\overline{p}p$ (same $\sigma_{\rm tot}$ within experimental & theoretical uncertainties)
- Normalization factor of TOTEM OP: 0.954 ± 0.071
- Slopes B preserved during scaling

$$\sigma_{tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \left(\frac{d\sigma}{dt}(t=0)\right)$$

Double exponential fits of TOTEM data sets

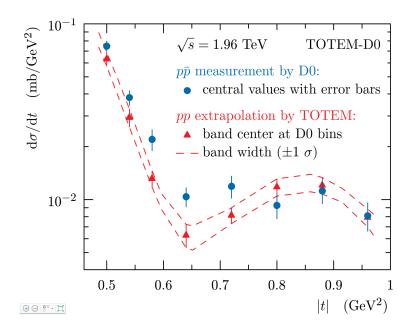


Excellent fits for all pp data sets @ 2.76, 7, 8 & 13 TeV

$$h_{1}(t) = a_{1}e^{-a_{2}|t|^{2}-a_{3}|t|}$$

$$h_{2}(t) = a_{4}e^{-a_{5}|t|^{3}-a_{6}|t|^{2}-a_{7}|t|}$$

$$h(t) = a_1 e^{-a_2|t|^2 - a_3|t|} + a_4 e^{-a_5|t|^3 - a_6|t|^2 - a_7|t|}$$



Comparison of $pp \& p\bar{p}$ at $\sqrt{s} = 1.96$ TeV: the χ^2 formula

2

$$\chi^{2} = \sum_{data\ points\ i\ j} (Tot_{i} - D0_{i})C_{ij}^{-1}(Tot_{j} - D0_{j}) + \frac{(A - A_{0})^{2}}{\sigma_{A}^{2}} + \frac{(B - B_{0})^{2}}{\sigma_{B}^{2}}$$

 χ^2 test: pp & $p\bar{p}$ cross sections disagree at 3.4 σ level