Dark photons at ATLAS / CMS / LHCb Federico Leo Redi on behalf of the ATLAS, CMS, and LHCb collaborations

9th Edition of the Large Hadron Collider Physics Conference

Jun 2021

Summary of results

- •

ullet

ullet

- ullet

<u>CONF-2021-004</u> Eur. Phys. J. C 80 (2020) 450 PHYS-PUB-2020-007

PAS EXO-20-014 NEW

<u>JHEP 03 (2021) 011</u>

Phys. Rev. Lett. 124 (2020) 131802

<u>JHEP 10 (2019) 139</u>

Phys. Rev. Lett. 124, 041801 (2020) Phys. Rev. Lett. 120, 061801 (2018)

2

ATLAS: Searches for electroweak production of two jets in association with a Higgs boson decaying fully or partially to invisible particles, including a final state photon using proton-proton collisions at 13 TeV

- Search using 2015 to 2018 dataset ~ 139 fb⁻¹
- Signal selected using the powerful **ATLAS MET triggers**: Trigger algorithms based on the presence of missing transverse momentum, E^{miss}T
- Probing decays of the Higgs to invisible particles when produced through the SM-predicted vector boson fusion (VBF) in association with an emitted photon (top)
 - Higgs boson decays to a photon and an invisible dark $\overline{\chi}$ photon with a branching ratio $B(H \rightarrow \gamma \gamma_d)$
- This makes it sensible also to probe a dark photon model which predicts a massless dark photon (γ_d) coupled with the Higgs boson through a U(1) unbroken Wark sector (bottom)

ATLAS: Searches for electroweak production of two jets in association with a Higgs boson decaying fully or partially to invisible particles, including a final state photon

- Jacobian peak of $H \rightarrow \gamma \gamma_d$ decays signature characterised by the use of **transverse mass**
 - Transverse missing energy
 - Transverse photon momentum
 - Azimuthal angle around the zaxis
- Maximum likelihood fit with the • $B(H \rightarrow \gamma \gamma_d)$ signal normalisation floating in the ten [m_{ii},m_T] SR bins
- Four inclusive CRs as a function • of $m_T (\gamma, E^{miss}T)$

S(C)R := Signal (Contro) Region

Federico Leo Redi | École polytechnique fédérale d

$$m_{\rm T}(\gamma, E_{\rm T}^{\rm miss}) = \sqrt{2p_{\rm T}^{\gamma}E_{\rm T}^{\rm miss}} \left[1 - \cos(\phi_{\gamma} - \phi_{E_{\rm T}^{\rm miss}})\right]$$

ATLAS: Searches for electroweak production of two jets in association with a Higgs boson decaying fully or partially to invisible particles, including a final state photon

· TOP

- Post-fit $m_T(\gamma, E^{miss}T)$ distribution in the inclusive signal region
- As before the H $\rightarrow \gamma \gamma_d$ decay signal is shown for two different mass hypotheses, 125 GeV and 500 GeV, and scaled to a B(H $\rightarrow \gamma \gamma_d$) of 2% and 1%, respectively

BOTTOM

- At an observed (expected) upper limit on $B(H \rightarrow \gamma \gamma_d)$
- 95% CL limit on σ^{V BF} * B(H → γγ_d) calculated for dominant VBF-produced production mode with different mass hypotheses
- 5 | Federico Leo Redi | <u>École polytechnique fédérale de Lausanne</u>

ATLAS: LLPs to light hadrons or collimated leptons

- Collimated groups of leptons and light hadrons § in a jet-like structure == Dark photon jets (DPJs)
- µDPJ or hDPJ (e and pions)
- ABCD used and not excess measured
- Extrapolated signal efficiency for the
 - $H \rightarrow 2\gamma_d + X$

(HLSP: hidden lightest stable particle)

- $H \rightarrow 4\gamma_d + X$ (Sd: dark scalars)
- as a function of $c\tau$ of the dark photon in the
 - µDPJ–µDPJ

 - µDPJ-hDPJ HLSP
 hDPJ-hDPJ channels
- Federico Leo Redi | <u>École polytechnique fédérale de Lausanne</u> 6

HLSP

ATLAS: Reinterpretation of the ATLAS Search for Displaced Hadronic Jets with the **RECAST** Framework

- An ATLAS search for displaced jets in • the HCAL is reinterpreted and used to constrain three NP models $\not\subset$ of the original paper
- Original signal $\phi \rightarrow ss \rightarrow fff'f'$ •
 - Heavy neutral boson: ϕ ; Neutral scalar boson: S
- **RECAST** is a framework designed to • reuse estimates of backgrounds, systematic uncertainties and observations in the data from the original search to test alternative signal hypotheses
- Diff from previous analysis since using ٠ pairs of displaced jets in the HCAL
- Federico Leo Redi | <u>École polytechnique fédérale de Lausanne</u>

efficiency

 10^{-4}

 10^{-7}

PHYS-PUB-2020-007

Summary of results

<u>CONF-2021-004</u> Eur. Phys. J. C 80 (2020) 450 PHYS-PUB-2020-007

PAS EXO-20-014 NEW JHEP 03 (2021) 011 Phys. Rev. Lett. 124 (2020) 131802 <u>JHEP 10 (2019) 139</u>

Phys. Rev. Lett. 124, 041801 (2020) Phys. Rev. Lett. 120, 061801 (2018)

8

CMS: Search for long-lived particles decaying into two muons

in pp collisions at $\sqrt{s} = 13$ TeV using data collected with high rate triggers

- resonances (also as a preliminary public page)
- 2017 and 2018 which is 101 fb⁻¹ scouting data
- Sensitive to DP (Zd)
 - via the Higgs mixing (denoted as κ)
 - via the kinetic mixing coupling (denoted as ε)
- And a singlet scalar field (φ)

CMS: Search for long-lived particles decaying into two muons

- Importance of scouting trigger (like TURBO in LHCb)
- Efficiency of such triggers measured as a function of the dimuon transverse displacement I_{xy} from the interaction point and of the minimum p_T^µ of the pair, using events with at least two muons selected with orthogonal standard triggers
- CMS pixel tracker geometry used for an I_{xy} categorisation plus bins of dimuon transverse momentum brings maximisation of the sensitivity to different signal topologies
- A search for a resonant dimuon peak in each mass window is performed

CMS: Search fo $\overline{\mathbb{E}}_{\mathbb{A}}$ 10⁻⁶ $\xrightarrow{\text{CMS Preliminary}}{\text{Ipp} \rightarrow B \rightarrow \phi X \rightarrow 2\mu X (ct_{0}^{\phi}=1 \text{ mm})}$ decaying into tw

- Very competitive cons
 - Theorists will have a for reinterpretation

- **Bonus**: Exclusion limits at 95% CL on the branching fraction B(B $\rightarrow \phi X$) * B($\phi \rightarrow \mu \mu$) as a function of the signal mass (m_{Φ}) hypothesis for a given lifetime: LHCb, careful!
 - Not easy to compare since CMS limits are on the inclusive $B \rightarrow \phi X$ branching ratio, while the LHCb limits are on the exclusive B0 $\rightarrow \phi K^*$ and B⁺ $\rightarrow \phi K^+$ branching ratios
- Exclusion limits at 95% CL on the br $h \rightarrow Z_D Z_D$
- $B(h \rightarrow Z_D Z_D)$ and as $B(h \rightarrow Z_D Z_D)$

CMS: Search for a narrow resonance lighter than 200 GeV decaying to a pair of muons in proton-proton collisions at √s=13 TeV

- Search for a narrow resonance decaying to a pair of oppositely charged muons
- The search looks for a narrow resonance in the 11.5– 200 GeV mass range, omitting the 75–110 GeV range where Z boson production dominates
- For dimuon resonance masses below ~40 GeV scouting!
- E.g. "barrel" ($|\eta| < 0.9$) search for a 25 GeV resonance (**TOP**) •
- In order to extract the signal from data, a simultaneous binned • maximum likelihood fit is performed to the $m_{\mu\mu}$ distributions in the "barrel" and "forward" (0.9 < $|\eta|$ < 1.9) event categories
- Expected and observed upper limits at 95% CL on the • product of the signal cross section (σ) for a narrow resonance, branching fraction to a pair of muons (B), and acceptance (A) as a function of the mass of a narrow resonance (**BOTTOM**)
- 12 | Federico Leo Redi | <u>École polytechnique fédérale de Lausanne</u>

CMS: Search for dark photons in Higgs boson production via vector boson fusion

in proton-proton collisions at $\sqrt{s} = 13$ TeV.

JHEP 03 (2021) 011

- Search using 2016 to 2018 datasets (analysed Search using 2016 to 2018 datasets (analysed • independently) ~ 139 fb⁻¹ independently) ~ 130 fb⁻¹
- Signal topology: two oppositely charged same- Similar to what previously present for ATLAS (but) flavour high p_T isolated leptons, electrons or this published before) muons, compatible with a Z boson decay, large p Expected and observed upper limits at 95% CL miss T, an isolated high p_T photon, and little jet 130 fb⁻¹ (13 TeV) [qd] activity CMS Observed

Federico Leo Redi | <u>École polytechnique fédérale de Lausanne</u> 13

CMS: Search for dark photons in Higgs boson produced in association with Z bosons

in proton-proton collisions at $\sqrt{s} = 13$ TeV

JHEP 10 (2019) 139

Expected and observed upper limits at 95% CL

Summary of results

 \bullet

ullet

ullet

٠

- •

CONF-2021-004 Eur. Phys. J. C 80 (2020) 450 PHYS-PUB-2020-007

PAS EXO-20-014 NEW <u>JHEP 03 (2021) 011</u> Phys. Rev. Lett. 124 (2020) 131802 <u>JHEP 10 (2019) 139</u>

Phys. Rev. Lett. 124, 041801 (2020) Phys. Rev. Lett. 120, 061801 (2018)

14

LHCb: is CMS so much different?

LHCb's B

LHCb: Searching for Dark Photons

- Used **5.5 fb⁻¹** of Run 2 LHCb data (13 TeV)
- by a factor ε :

 - data-driven analysis

Federico Leo Redi | <u>École polytechnique fédérale de Lausanne</u> | 16

PRL 120 (2018) 061801 . 124 (2020) 041801

LHCb: Low-mass dimuon resonances / 1

• Non-minimal searches, example signatures:

+ no isolation requirement + non-zero width considered

Prompt + b-jet

+ non-zero width considered

<u>JHEP 10 (2020) 156</u>

Displaced non-pointing

LHCb: Low-mass dimuon resonances / 2

\Box Upper limits at 90% CL on $\sigma(X \rightarrow \mu\mu)$

Taken from I. Kostiuk's talk

JHEP 10 (2020) 156

LHCb: Low-mass dimuon resonances / 3

- A complex scalar singlet is added to the two-Higgs doublet (2HDM) potential •
- E.g. a scenario where the pseudoscalar boson acquires all of its couplings to SM fermions through • its mixing with the Higgs doublets; the corresponding X–H mixing angle is denoted as $\theta_{\rm H}$

Conclusions

- ۲ analyses I have missed!
- for the time being...
- DM, BAU,...)

											PEN2014 Theoretical summary - M.			
2020	2021	2022	2023	2024	2025	2026	202	27	2028	2029	2030	2031	203?	
LS2		RUN 3			LS3			RUN 4			LS4		RUI	
LHCb 40 MHz Upgrade la		$L = 2 \times 10^{33}$			LHCb Upgrade Ib			L = 2x10 ³³ ; 50 fb-1			LHCb Upgrade II (proposed)		L = 2× 300 (propo	

Plenty of results, really hard to cover everything in 15 minutes, so sorry to the people whose

The days of "guaranteed" discoveries or of no-lose theorems in particle physics are over, at least

... but the big questions of our field remain wild [SIC] open (hierarchy problem, flavour, neutrinos,

This simply implies that, more than for the past 30 years, future HEP's progress is to be driven by experimental exploration, possibly renouncing/reviewing deeply rooted theoretical bias

Thanks Federico Leo Redi

Run: 358300 Event: 1104384151 2018-08-14 14:20:39 CEST jj mass: 3047 GeV MET: 201 GeV mT: 115 GeV photon pT: 74 GeV

The LHCb detector

- **LHCb** is a dedicated flavour experiment in the **forward region** at the LHC $(1.9 < \eta < 4.9)(~1^{\circ}-15^{\circ})$
- Precise vertex reconstruction < 10 µm vertex resolution in transverse plane.
- Lifetime resolution of ullet
 - ~ 50 fs for a J/ψ
 - ~ 0.2 ps for long lived neutral particle of m = 3 GeV and τ = 100 ps
- **Muons** clearly identified and triggered: ~ 90% μ [±] efficiency
- Great mass resolution: e.g. 15 MeV for J/ψ
- Low p_T trigger means low masses accessible. Ex: $p_{T\mu} > 1.5$ GeV

JINST3(2008)S08005 Int J Mod Phys A30(2015)1530022 JHEP 1511 (2015) 103

2010 to 2018

Muon system

Calorimeter

VELO

RICH

Tracking

LHCb: Trigger

- Lower luminosity (and low pile-up) •
 - ~1/8 of ATLAS/CMS in Run 1 •
 - ~1/20 of ATLAS/CMS in **Run 2** \bullet
- **Run 2**: •
 - Full real-time reconstruction (since • 2015) for all charged particles with $p_T >$ 0.5 GeV
 - We go from 1 TB/s (post zero • suppression) to 0.6 GB/s (mix of full + partial events)
 - **Run 3**:

•

LHCb will move to a **hardware-less** \bullet **readout system** for LHC Run 3 (2022-2024), and process 5 TB/s in real time to get 10 GB/s to storage

LHCb track types

LHCb data

- Precise knowledge of the location of the material in the LHCb VELO is essential to reduce the background in searches for long-lived exotic particles
- LHCb data calibration process can align • active sensor elements, an **alternative approach** is required to fully map the VELO material
- **Real-time calibration** in • Run 2 (Turbo Stream)
- Hardware trigger is still there, • and only ~10% efficient at low pT

Exploring the dark sector / 2

- **Decaying in the detector** •
 - **Reconstruction of decay vertex** •
- Not decaying in the detector •
 - Missing energy technique •
 - Scattering technique: electron or nuclei scattered by DM... •

Production of HS particle

Decay to SM particles

Exploring the dark sector / 3

- Decaying in the detector •
 - Reconstruction of decay vertex
- Not decaying in the detector •
 - **Missing energy technique**

