Future long-lived particle experiments

Heather Russell, CERN

9th Edition of the Large Hadron Collider Physics Conference

8 June 2021

Overview of LLPs @ the LHC

Neutral, long-lived particles with sufficiently long lifetimes could escape the standard detectors before decaying

Overview of LLPs @ the LHC

Dedicated experiments
will increase sensitivity to
LLPs by having large
decay volumes and being
farther displaced from
the interaction point

ANUBIS

LLPs from IP1 (ATLAS)

Below ground: inside access shaft above ATLAS

ATLAS has an 18m wide access shaft (PX14) located directly above the detector: suspend four tracking stations (2 \times 3 layers each) within the 56 m high shaft

Trigger ATLAS using ANUBIS

ATLAS can be used as an active veto of SM activity

Tracking stations same RPC technology as new ATLAS layers, with additional material for showering

Planning to install a demonstrator for Run 3

CODEX-b

LLPs from IP8 (LHCb)

Below ground

(inside LHCb's old DAQ room and/or DELPHI cavern)

Eol: arXiv:1911.00481
Update @ LLP Workshop

Detailed update @ Quarks (today!)

Detector located underground, 25 metres from the LHCb IP

Tracking with new-RPCs, like ANUBIS

6 layers on each wall to reconstruct LLP decay vertex

10x10x10 m³ fiducial volume has large lifetime acceptance

Targeting low-mass LLPs produced transversely and decaying to charged particles

addition of calorimetry or other material layeyrs for photon ID is being considered

CODEX- β demonstrator will be installed during Run 3: 2x2x2 m³ and integrated with LHCb; full detector for Run 5

FACET

LLPs from IP5 (CMS)
Forward detector

Forward-Aperture CMS ExTension: detector ~100 m from CMS IP with ~20m long decay volume, coverage in $6 < \eta < 8$

Much closer to the IP and much larger decay volume than FASER $(z_{FASER} = 480 \text{ m} - \text{complementary})$

Targeting letter of intent this summer and installation for HL-LHC (Run4)

Initial simulations showing good sensitivity

FORMOSA

millicharged LLPs from IP1 (ATLAS)

Forward detector

FORward MicrOcharge SeArch

Increased reach for both mass and charge, especially for strongly interacting dark matter

Similar detector technology to milliQan (scintillator bars coupled to PMTs)

Propose to start in Run 3 by moving the milliQan demonstrator

https://mathusla-experiment.web.cern.ch/

MATHUSLA

LLPs from IP5 (CMS)

Partially above ground

60 m above and 70 m horizontally displaced from CMS

25 m decay volume

MATHUSLA

Updated LoI: <u>arXiv:2009.01693</u>

Test stand: <u>arXiv:2005.02018</u>

Growing collaboration: institutes from Canada, US, Mexico, Chile, Bolivia, Italy, Israel ...

<u>Detailed update @ Quarks (today!)</u> Scintillator development @ Fermilab

100 9m x 9m modules

- 9 layers:
 - 2 on floor = active veto
 - 2 intermediate (tracking)
 - 5 on top (tracking + trigger)

Tracking with overlapping long (4x2.5m) plastic scintillator bars, wavelength-shifting fibres, and SIPMs

NB: Fibres join non-adjacent bars

Extensive study of scintillators underway: 1 ns timing resolution recently demonstrated with cosmic data

MATHUSLA

Updated LoI: <u>arXiv:2009.01693</u>

Test stand: arXiv:2005.02018

Detailed update @ Quarks (today!)
Scintillator development @ Fermilab

Detector and surrounding area simulated using GEANT4

- rock from geological survey
- cylindrical CMS with $\lambda = 10$

Allowing for detailed efficiency and reconstruction studies

air shower

Cosmic Update @ LLP Workshop Paper coming soon!

Detector also functions as a cosmic ray air shower observatory

Additional RPC layer would enhance sensitivity to extended air showers (less saturation)

AL3X

LLPs from IP2 (ALICE)

Only if ALICE ends their physics program before the end of HL-LHC

In the <u>very unlikely</u> event* ALICE finishes their physics program before the end of HL-LHC: <u>cavern and magnet</u> could be used for LLP searches

→ Requires upgrading IP2 to run at the nominal LHC luminosity

Move IP2
outside of the
magnet so
LLPs can
travel before
decaying

Using the existing magnet would allow for both position and momentum determination

Could reuse the ALICE TPC (smaller than the detector drawn here)

*consider this a case study in how existing detectors could be reused for LLP searches, not an active proposal

HADES

LLPs of the future (FCC or CEPC)

Planned FCC-ee detector cavern is much larger than necessary

Cover the walls with layers of scintillators

- \rightarrow Can achieve near 4π coverage
- → FCC-ee detector available as an active veto
- → Sensitive to a unique area of phase space

THUNDERDOME = Totally Hyper-UNrealistic DEtectoR in a huge DOME

<u>Initial proposal: arXiv:2105.12962</u> <u>Update @ LLP Workshop</u>

GAZELLE

LLPs @ SuperKEKB

Three proposed configurations around for LLPs from collisions in Belle-II

Summary and conclusions

Future experiments will be sensitive to large swaths of phase space

Many ideas for dedicated long-lived particle detectors – and new ones still being formed

Most current proposed experiments are aiming for data collection during HL-LHC

Now is an excellent time to start brainstorming ideas for FCC-ee/hh:

- can we work LLPs better into the baseline design?
- can we repurpose parts of current detectors?

(why not both?)

If you're interested in learning more, join the LLP working group workshops (twice per year). More information on the website:

https://longlivedparticles.web.cern.ch/