Deep Learning in Analysis

Lukas Heinrich, CERN on behalf of the ALICE, ATLAS, CMS, and LHCb collaborations

Why Deep Learning, Again?

size, data complexity & reliance on simulators

→ analyses pipelines have many knobs to tune

Main promise of Deep Learning in HEP

Help to efficiently explore configuration space of scientific pipeline to optimally extract information

Deep Learning Advantages: data representations & gradients

Why is it important now & why is it hard?

LHC @ 13 TeV: the era beyond the low-hanging fruit

→ focus on ever more challenging signals & phase-spaces

Good: High-velocity research cycles inside (IML) outside of HEP (CS)

Key Challenge: transfer from R&D to actual production usage

Today's Focus:

Methods in analysis going beyond vanilla Deep Learning with successful R&D → In Production @ LHC experiments

(lots of interesting ML on simulation side discussed elsewhere)

Shaping Discriminants

Beyond pure supervised training for challenging SUSY signals with

high $n_{\rm iet}$ and low $\sigma_{\rm SUSY}$ (RPV)

Control discriminant shape to be **invariant** through loss engineering

Here: Distance Correlation

NN invariant to b-jet multiplicity

• first sensitivity since LEP!

arxiv:2001.05310

DisCo Fever: Robust Networks Through Distance Correlation

Gregor Kasieczka^{1,*} and David Shih^{2,3,4,†}

Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
 NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 USA
 Theory Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
 Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA

While deep learning has proven to be extremely successful at supervised classification tasks at

R&D Paper: Jan 2020 → Deployed in Production: Mar 2021

$$L(\phi) = L_{\text{BCE}}(\hat{y}, y; \phi) + \lambda d\text{Corr}_{y=0}(\hat{y}, n_b; \phi)$$

Shaping Discriminants

Beyond pure supervised training for challenging SUSY signals with high $n_{\rm jet}$ and low $\sigma_{\rm SUSY}$ (RPV)

Control discriminant shape to be **invariant** through loss engineering

Here: Gradient Reversal

NN invariant to jet multiplicity

 $\sigma_{\widetilde{t}\,\widetilde{t}}$ [pb]

System Tagging

Boosted, hadronic topologies: ideal proving ground for DL

SUSY stop search

Dedicated networks for boosted & resolved multi-jet systems

DeepAK8-MD: adversarially tuned to be decorrelated with jet mass

Likelihood Ratio Estimation

Approximating Likelihood Ratios with Calibrated Discriminative Classifiers

Kyle Cranmer¹, Juan Pavez², and Gilles Louppe¹

¹New York University

²Federico Santa María University

arXiv:1506.02169

Classifiers (e.g. NNs, BDTs) trained to separate two populations

are efficient per-event L'hood ratio estimators

powerful for high-dimensional reweighting

Key for leading shape uncertainties in VH channel with H→bb

- train classifier on Sherpa vs Madgraph
- can reweight nominal (high-stats) samples using classifier for data-efficient but precise systematics modelling

R&D Paper: Nov 2015 → Deployed for V(H→bb): July 2020 (similar technique used in e.g. arXiv:1806.04030)

Jet Reconstruction

Jet $p_{\rm T}$ reconstruction challenging in high-density environment of ALICE

- traditional method: pedestal-subtraction with event-global background estimate
 - \rightarrow limited at low p_T & large radii

$$p_{\mathrm{T}}^{\mathrm{rec}} = p_{\mathrm{T}}^{\mathrm{raw}} - \rho A$$

Charged Tracks

Jet Reconstruction

New ML method:

- neural net for jet-by-jet $p_{\rm T}$ correction (based on constituent, jet and event inputs)
- much more precise measurements
- enables measurement of previously out-of-reach phase-space: jet $p_{\rm T}$ as low as 40 GeV

ALICE Preliminary Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 0-10\%$ Full Jets, anti- k_T R = 0.4, $|\eta_{jet}| < 0.7 - R$ ML Estimator Trained on PYTHIA

ML Fragmentation Bias Studies

ML Fragmentation Bias Studies

Model Comparisons $p_{jot} = \frac{100}{2} = \frac{100}{2$

PYTHIA + Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, 0-10%

Full jets, anti- k_T , R = 0.4, $\eta_{iet} < 0.3$

ALICE Performance

 $40 < p_{T. det} < 120 \text{ GeV/}c$

Mean: 2.71, Width: 13.20

Mean: 0.81, Width: 5.35

Mean: 0.01, Width: 5.52

Mean: -0.95, Width: 5.83

arxiv:2009.02269

Neural Network

Linear Regression

Random Forest

 $p_{\mathrm{T}}^{\mathrm{rec}} = \mathrm{NN}(p_{\mathrm{T}}^{\mathrm{raw}}, p_{\mathrm{T}}^{\mathrm{raw}} - \rho A, n_{\mathrm{const}}, \mathrm{jet\ shape}, \{p_{\mathrm{T,i}}\}, \ldots)$

Rui Fang¹, Henry F Schreiner^{1,2}, Michael D Sokoloff¹, Constantin

for identifying and locating primary vertices

Progress in developing a hybrid deep learning algorithm

Simon Akar^{1,*}, Gowtham Atluri¹, Thomas Boettcher¹, Michael Peters¹, Henry Schreiner², Michael Sokoloff^{1,**}, Marian Stahl¹, William Tepe¹, Constantin Weisser³, and Mike

PV-finder flow

Tracking

Kernel generation

Make predictions

 $\longrightarrow \longrightarrow \longrightarrow \longrightarrow$

CNNs

Interpret results

A hybrid deep learning approach to vertexing

Williams³

¹University of Cincinnati

³Massachusetts Institute of Technology

²Princeton University

 ∞

Primary Vertex Finding

Idea:

- project sparse 3D tracking data to 1D distribution via kernel density estimation (KDE)
- Deep Learning (CNN) to process peaky distribution to find primary vertiecs

Primary Vertex Finding

Moving towards Production:

Replace expensive KDE building
 with two DNN-based KDE predictions
 from track parameters

 method improved by new KDEs & moving to full LHCb simulation

Ongoing R&D

 replace CNNs with U-Net improves performance on Toy MC (expected to transfer to real LHCb MC)

Efficiency (%)

90

Future Directions I

Attention Mechanisms

- interpretable, selfreferencing networks
- foundation of recent impressive advances in natural language models

Graph Networks

- natural representation interacting variable-size inputs
- heavy R&D in tracking tagging, analysis

 $\mathcal{G}(X, A \mid w) = H$

Future Directions II

Simulation-aided L'hood Ratio

- Internal Simulator states can make ratio estimation 100x more data efficient
- general trend of co-designing ML with simulator code

Differentiable Programming

- generalization from architecture zoo to new programming paradigm
- mix learnable blocks & physics structure in end-to-end manner

Outlook

Deep Learning is (becoming) mainstream in HEP in LHC analyses.

→ deployed at each stage of analysis pipeline

Now focus on going beyond standard ML: robust representations, system classificaton, neural reweighting, detailed reco,

Impressive turnaround from R&D → production at LHC experiments

Many methods in R&D: Attention, Graphs, Simulation-based Inference

- → integrating them pays off, reaches otherwise inaccessible physics
- → we're only at the beginning of Deep Learning in physics analysis

Backup

Original LHCb Kernel: $\sum \frac{p^2}{p} - p$

• 1 MINUIT call per z position

Now two kernels $\sum p^2$ Kernel prediction:

$$\sum p^2$$
 $\sum p$

