GPUs in Triggers and Reconstruction

Tom Boettcher

on behalf of the ALICE, ATLAS, CMS, and LHCb Collaborations

LHCP
June 9, 2021
Computing Challenges at the LHC

Run 3 (2022): “Triggerless” data collection at ALICE and LHCb
- LHCb: pp at 40 MHz, 5 TB/s
- ALICE: PbPb at 50 kHz, 3.5 TB/s

Run 4 (2027): The HL-LHC
- ATLAS and CMS will collect pp data at a pileup of 200
- Will increase hardware trigger rate from 100 kHz to 750 – 1000 kHz

Tom Boettcher

LHCP June 9, 2021 2 / 16
Why use GPUs

Affordable computing power in a compact package

![Graph showing theoretical peak GFLOPs/$ versus release date with data points for Nvidia consumer GPUs, AMD consumer GPUs, Nvidia scientific GPUs, AMD scientific GPUs, and Intel & AMD CPUs.

Also see talk by Ole Schmidt on June 8 for more on hardware acceleration in general.

Tom Boettcher
LHCP June 9, 2021 3 / 16
What is a GPU?

- Highly parallel processors with thousands of cores (threads)
- Many trigger and reconstruction tasks parallelize nicely (with some work)
ALICE Data Processing in Run 3

- Triggerless PbPb data taking at 50 kHz
- TPC must be reconstructed in real time for compression and calibration
- TPC reco on GPUs since Run 1
- Aim for full barrel track reco on GPUs

PoS (LHCP2020) 053
Tom Boettcher

GPU reco ready
GPU reco in development
Baseline: TPC reconstruction + whatever else is ready
Optimistic: Full barrel track reconstruction on GPUs

See David Rohr’s vCHEP talk
GPUs at ALICE vs. ATLAS and CMS

ALICE
- TPC reconstructions dominates
- Process 10 ms “timeframes”, $\mathcal{O}(10 \text{ GB})$
- $\sim 80 \times$ speedup on GPUs
- Clear use case for GPUs

ATLAS and CMS
- No single subdetector dominates
- Much higher rates of smaller events
- Advantages of GPUs compete with challenges: portability, overhead, etc.
ATTLAS: GPU R&D in ACTS

A Common Tracking Software (ACTS)

- Targeting end-to-end tracking on GPUs: traccc
- Includes R&D studies of data structures and memory management: VecMem

Track Seeding Algorithm

Kalman Filter

arXiv:2105.01796
CMS: Pixel Track and Calorimeter Reconstruction

CMS reconstruction on GPUs in Run 3

- Pixel track reconstruction: Front. Big Data 3 (2020) 601728
- Primary vertices from pixel tracks
- Calorimeter local reconstruction
- Out-of-time pileup subtraction
- Fully integrated into CMSSW. See arXiv:2004.04334

Other GPU R&D activities

- Particle Flow for Run 3
- HGCAL reco for Phase 2. See Front. in Big Data 3 (2020) 591315 and Bruno Alves’ vCHEP talk

Tom Boettcher

LHCP June 9, 2021
- CPU w/ GPU offload yields $\sim 25\%$ increase in HLT throughput
- Tesla T4 does about 70% of the work of $2 \times$ AMD Rome CPUs
- Costs $< 25\%$ as much
- Uses $< 20\%$ as much power
GPUs at ATLAS and CMS: Performance Portability

Major obstacle of GPU computing in HEP

- Different languages for and algorithm design for GPUs and CPUs
- Different languages between GPU vendors (e.g. CUDA, HIP)
- New accelerators may appear

Want native performance on many architectures with one codebase → implement GPU algorithms with “performance portability” APIs

- Kokkos
- alpaka
- oneAPI/SYCL

NB: ALICE and LHCb use their own lightweight wrappers for performance portability
GPUs at ALICE, ATLAS, and CMS vs. LHCb

ATLAS and CMS
- GPUs as coprocessors in software triggers
- Perform reconstruction for a few individual detectors

ALICE
- No software trigger
- Use GPUs for reconstruction and data compression

LHCb
- Full first level software trigger (HLT1) on GPUs
- 30 MHz of small events → unique I/O challenge
Allen is LHCb’s GPU-based first level software trigger (HLT1)

- Decode data from the VELO, UT, SciFi, and Muon systems
- Cluster detector data into “hits”
- Build tracks (VELO, UT, and SciFi)
- Find primary vertices (PVs) (VELO)
- Match tracks to Muon hits

Works as a standalone application or as part of LHCb’s software stack

Can be compiled for CPU or GPU with CUDA or HIP
Can process the full LHC event rate at LHCb with ~ 200 RTX 2080 Tis
Achieves the baseline HLT1 physics goals for Run 3
Both CPU and GPU software triggers meet the basic requirements for HLT1.

CPU-GPU decision requires a detailed cost benefit analysis.

GPU solution leads to cost savings on processors and networking.

Enough throughput headroom for additional features.

The final verdict: A GPU-based software trigger will allow LHCb to expand its physics reach in Run 3 and beyond.
Conclusions

- All four LHC experiments are using or studying GPUs in triggers and reconstruction
- The experiments utilize GPUs in very different ways
- GPUs have the potential to expand the reach of the entire LHC physics program

Thank you!

Special thanks to Xiaocong Ai, Andrea Bocci, Attila Krasznahorkay, Felice Pantaleo, David Rohr, Ole Schmidt, and Dorothea vom Bruch for their help preparing this talk!
Backup
GPU studies for Run 3

- **ATL-DAQ-PROC-2012-006**
- **ATL-DAQ-PROC-2016-035**
- Not cost-effective for Run 3 trigger
- Re-evaluating for Run 4 and beyond

Heterogeneous Computing Forum

- Accelerator R&D for online and offline
- ML projects
- FastCaloSim: arXiv:2103.14737
- **A Common Tracking Software (ACTS):** See e.g. arXiv:1910.03128