GPUs in Triggers and Reconstruction

Tom Boettcher

on behalf of the ALICE, ATLAS, CMS, and LHCb Collaborations

LHCP June 9, 2021

Tom Boettcher

Computing Challenges at the LHC

Run 3 (2022): "Triggerless" data collection at ALICE and LHCb

- \blacksquare LHCb: pp at 40 MHz, 5 TB/s
- \blacksquare ALICE: PbPb at 50 kHz, 3.5 TB/s

Run 4 (2027): The HL-LHC

- ATLAS and CMS will collect *pp* data at a pileup of 200
- Will increase hardware trigger rate from 100 kHz to 750 − 1000 kHz

Affordable computing power in a compact package

Courtesy of Dorothea Vom Bruch, arXiv:2003.11491

Also see talk by Ole Schmidt on June 8 for more on hardware acceleration in general

Tom Boettcher

LHCP June 9, 2021 3 / 16

• Highly parallel processors with thousands of cores (threads)

• Many trigger and reconstruction tasks parallelize nicely (with some work)

ALICE Data Processing in Run 3

- Triggerless PbPb data taking at 50 kHz
- TPC must be reconstructed in real time for compression and calibration
- TPC reco on GPUs since Run 1

40

20

5x107

• Aim for full barrel track reco on GPUs Vumber of CPU cores (Rome, 3.3GHz) replaced by GPU 140 120 хж 100 80 LICE Performance Pb-Pb (SNN = 5.02 TeV 60

GPU reco ready GPU reco in development

PoS (LHCP2020) 053

1x10⁸

NVIDIA Quadro RTX

2x10⁸

1.5x10⁶

Number of TPC clusters

NVIDIA V100s AMD MISO

2.5x10⁸

3x10⁸

ALICE Run 3 GPU Scenarios

Baseline: TPC reconstruction + whatever else is ready **Optimistic:** Full barrel track reconstruction on GPUs

See David Rohr's vCHEP talk

GPUs at ALICE vs. ATLAS and CMS

ALICE

- TPC reconstructions dominates
- Process 10 ms "timeframes", $\mathcal{O}(10 \text{ GB})$
- $\blacksquare \sim 80 \times$ speedup on GPUs
- Clear use case for GPUs

ATLAS and CMS

- \blacksquare No single subdetector dominates
- Much higher rates of smaller events
- Advantages of GPUs compete with challenges: portability, overhead, etc.

ATLAS: GPU R&D in ACTS

A Common Tracking Software (ACTS)

- Targeting end-to-end tracking on GPUs: traccc
- Includes R&D studies of data structures and memory management: VecMem

CMS: Pixel Track and Calorimeter Reconstruction

CMS reconstruction on GPUs in Run 3

- Pixel track reconstruction: Front. Big Data 3 (2020) 601728
- Primary vertices from pixel tracks
- Calorimeter local reconstruction
- Out-of-time pileup subtraction
- Fully integrated into CMSSW. See arXiv:2004.04334

Other GPU R&D activities

- Particle Flow for Run 3
- HGCAL reco for Phase 2. See Front. in Big Data 3 (2020) 591315 and Bruno Alves' vCHEP talk

[UPDATE] Combine layer SoA's into a single SoA

2000

[UPDATE] move CudaMalloc/CudaFree to constructor/destructor

2000

7 ms for kernel execution: 37 ms for GPU memory operation: 6 ms for SoA operation

6 ms for kernel execution: 20 ms for GPU memory operation: 6 ms for SoA operation

Execution Time [ms]

50 ms

32 ms

1000

CLUE on GPU V2 -

CLUE on CDU1/2

6000

e.com/drive/folders/17To4oN6fNgOD_WBY1rKhdOw1P9V0fEvg?usp=sharing

5000

CMS: Run 3 Performance

- \blacksquare CPU w/ GPU offload yields $\sim 25\%$ increase in HLT throughput
- \blacksquare Tesla T4 does about 70% of the work of 2×AMD Rome CPUs
- \blacksquare Costs <25% as much
- \blacksquare Uses <20% as much power

GPUs at ATLAS and CMS: Performance Portability

Major obstacle of GPU computing in HEP

- Different languages for and algorithm design for GPUs and CPUs
- Different languages between GPU vendors (e.g. CUDA, HIP)
- New accelerators may appear

Want native performance on many architectures with one codebase \rightarrow implement GPU algorithms with "performance portability" APIs

- Kokkos
- alpaka
- oneAPI/SYCL

NB: ALICE and LHCb use their own lightweight wrappers for performance portability

GPUs at ALICE, ATLAS, and CMS vs. LHCb

ATLAS and CMS

- GPUs as coprocessors in software triggers
- Perform reconstruction for a few individual detectors

ALICE

- No software trigger
- Use GPUs for reconstruction and data compression

LHCb

- Full first level software trigger (HLT1) on GPUs
- 30 MHz of small events \rightarrow unique I/O challenge

Tom Boettcher

- Decode data from the VELO, UT, SciFi, and Muon systems
- Cluster detector data into "hits"
- Build tracks (VELO, UT, and SciFi)
- Find primary vertices (PVs) (**VELO**)
- Match tracks to **Muon** hits

Works as a standalone application or as part of LHCb's software stack Can be compiled for CPU or GPU with CUDA or HIP

GPUs at LHCb: Performance

- Can process the full LHC event rate at LHCb with ~ 200 RTX 2080 Tis
- Achieves the baseline HLT1 physics goals for Run 3

Tom Boettcher

GPUs at LHCb: The GPU vs. CPU Decision (arXiv:2105.04031)

- Both CPU and GPU software triggers meet the basic requirements for HLT1
- CPU-GPU decision requires a detailed cost benefit analysis
- GPU solution leads to cost savings on processors and networking
- Enough throughput headroom for additional features
- The final verdict: A GPU-based software trigger will allow LHCb to expand its physics reach in Run 3 and beyond.

• All four LHC experiments are using or studying GPUs in triggers and reconstruction

- The experiments utilize GPUs in very different ways
- GPUs have the potential to expand the reach of the entire LHC physics program

Thank you!

Special thanks to Xiaocong Ai, Andrea Bocci, Attila Krasznahorkay, Felice Pantaleo, David Rohr, Ole Schmidt, and Dorothea vom Bruch for their help preparing this talk!

ATLAS: GPU R&D

GPU studies for Run 3

- ATL-DAQ-PROC-2012-006
- ATL-DAQ-PROC-2016-035
- Not cost-effective for Run 3 trigger
- Re-evaluating for Run 4 and beyond

Heterogeneous Computing Forum

- Accelerator R&D for online and offline
- ML projects
- FastCaloSim: arXiv:2103.14737
- A Common Tracking Software (ACTS): See e.g. arXiv:1910.03128

