Advances in Analysis tools/ecosystem

Oksana Shadura1
On behalf of the ALICE, ATLAS, CMS, and LHCb collaborations

1oksana.shadura@cern.ch - University of Nebraska-Lincoln, USA
Analysis methods need to evolve to keep up with HL-LHC data ratio of data as well as new opportunities from data science and evolution computational technology!
Evolution of analysis ecosystem for HL-LHC

Figures from Jim Pivarski "Pythonic Data Analysis" @ HL-LHC Analysis Mini-Workshop and results from PyHEP2020 participants survey
Making analysis in ROOT faster and more efficient
The introduction of elements of **declarative programming** in the design (users say *what* they need to compute, RDataFrame chooses *how* to compute it) provides user-visible advantages such as less typing, increased readability and abstraction of complex operations.
Distributed ROOT RDataframe

- Enables interactive large-scale distributed data analysis with \textit{RDataFrame}
- Can run with different schedulers
 - Spark
 - Dask
 - AWS
 - Other backends in the future
- Analysis from start to end in a single interface

```r
SparkRDF = ROOT.RDF.Experimental.Distributed.Spark.RDataFrame
df = SparkRDF(dataset)
df2 = df.Filter(...).Define(...) # No changes in user code
h1 = df2.Histo1D(...)
h1.Draw() # Transparently trigger distributed execution
```
Seamless transition from TTree to RNTuple

Event iteration
Reading and writing in event loops and through RDataFrame
RNTupleDataSource, RNTupleView, RTupleReader/Writer

Logical layer / C++ objects
Mapping of C++ types onto columns
e.g. std::vector<float> → index column and a value column
RField, RTupleModel, REntry

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int,...) grouped into (compressed) pages and clusters
RColumn, RColumnElement, RPage

Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor

RNTuple provide modular storage layer that supports files as data containers but also file-less systems (object stores)!

RNTuple R&D aiming at a leap in data throughput

- Updated (backwards incompatible) data format for next-generation event I/O
- Expect ~10-15% smaller files, x2-5 better single-core throughput on SSD
- Aims at using modern I/O devices to the full capacity
- Modern, robust API (e.g., thread-friendly, systematic use of exceptions)

Blomer, Jakob, et al. "Evolution of the ROOT Tree I/O."
https://doi.org/10.1051/epjconf/202024502030
ROOT RNTuple

~2018-19
- Proof of concept
 - Class design
 - File format R&D

~2019-20
- Prototype
 - Interplay with other ROOT classes
 - Performance validation

~2021-22
- First exploitation
 - Interplay with experiment frameworks
 - Schema evolution

~2022-23
- Pre-production
 - PB scale test cases
 - Production tests with last-stage ntuples

~2023-24
- Production
 - Ready to use for new runs

ROOT team expect RNTuple to be adopted as a Run 4 technology

Available now in ROOT::Experimental
Note: TTree technology will remain available for the 1EB+ existing data sets
Extending data science tools to efficiently serve HEP needs

- *Community-driven* and *community-oriented effort* with the aim of providing HEP at large with a *toolset* ecosystem for data analysis in Python
- Widely adopted and used by physicists and *not only*
- Build a community of developers and users, having sustainability in mind
Figure from Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020)

scikit-HEP packages in blue
Minimalist ROOT I/O in pure Python and Numpy
Uproot easily bridges the ROOT and the NumPy-based ecosystems
Unlike the standard C++ ROOT implementation, Uproot is only an I/O library, primarily intended to stream data into machine learning libraries in Python.

https://github.com/scikit-hep/uproot4

Logical view: particles as lists of nested objects

Physical layout: arrays grouped in a tree structure

Pure Python+Numpy library for manipulating complex data structures even if they
- Contain variable-length lists (jagged/ragged)
- Are deeply nested (record structure)
- Have different data types in the same list (heterogeneous)
- Are not contiguous in memory

https://github.com/scikit-hep/awkward-1.0
Hist is python bindings for Boost::Histogram, a C++14 library. (Boost::Histogram is one of the fastest libraries for histogramming, while still providing the power of a full histogram object)

Matplotlib is a key tool for visualisation in the data science domain
 - But it doesn’t provide all that HEP wants

Mplhep distributes mpl stylesheets with required plotting styles for ATLAS, CMS, ALICE and LHCb and provides histogram plotting functions, which accept hist and uproot(TH1) histograms for convenience.

In [1]:
1. import numpy as np
2. import hist

In [2]:
1. h = hist.Hist.new.Reg(30, -2, 2).Weight()
2. h.fill(np.random.normal(size=10_000))
3. h

Out[2]:

regular(30, -2, 2, label='Axis 0')
WeightedSum(value=9503, variance=9503)

https://github.com/scikit-hep/hist

In [3]:
1. h.fill(np.random.normal(size=10_000), weight=3.)
2. h

Out[3]:

regular(30, -2, 2, label='Axis 0')
WeightedSum(value=38120, variance=95354)

https://github.com/scikit-hep/hist

https://github.com/scikit-hep/mplhep

import mplhep as hep
hep.style.use(hep.style.ROOT) # For now ROOT defaults to CMS
Or choose one of the experiment styles
hep.style.use(hep.style.ATLAS)
or
hep.style.use("CMS") # string aliases work too
{"ALICE" | "ATLAS" | "CMS" | "LHCb1" | "LHCb2"}

Boost-histogram: High-Performance Histograms as Objects [SciPy 2020] Schreiner, Pivarski & Dembinski
Vector implements vectorized 2D, 3D, and Lorentz vectors in

- Python objects, NumPy arrays, and Awkward Arrays
- Transparent coordinate system conversion
- Just-in-time compilation in Numba

zfit is designed for optimal parallelisation and scalability by making use of TensorFlow as its backend. The use of TensorFlow provides crucial features in the context of model fitting like taking care of the parallelisation and analytic derivatives

EPJ Web of Conferences 245, 06025 (2020)
https://doi.org/10.1051/epjconf/202024506025

https://github.com/zfit/zfit
https://github.com/scikit-hep/vector
Pyhf and cabinetry

pyhf: HistFactory in pure Python

- First non-ROOT implementation of the HistFactory p.d.f. template
 - DOI: 10.5281/zenodo.1169739
- Pure-Python library with Python and CLI API
 - `$ pip install pyhf`
 - No dependence on ROOT!
- Open source tool for all of HEP
 - IRIS-HEP supported Scikit-HEP project
 - Used for reinterpretation in phenomenology paper (DOI: 10.1007/JHEP04(2019)144) and SiModel1S
 - Used in ATLAS SUSY groups and for internal pMSSM SUSY large scale reinterpretation
 - Maybe your experiment too!

[GitHub link for pyhf](https://github.com/scikit-hep/pyhf)

cabinetry is a Python library for constructing and operating HistFactory models

- `pip install cabinetry`
- Uses **pyhf** (HistFactory model in Python)
- Integrates seamlessly with the flourishing Python HEP ecosystem
- Modular design: drop in and out of cabinetry whenever needed

[GitHub link for cabinetry](https://github.com/alexander-held/cabinetry)

Building and steering template fits with cabinetry

[GitHub link for cabinetry](https://github.com/alexander-held/cabinetry)

Alex Held vCHEP 2021

ROOT + XML to JSON and back

- Original workspace ROOT HistFactory
- Measurement::PrintXML()
- Original ROOT+XML
- Round-tripped ROOT HistFactory
- Hist2workspace
- Pyhf::json2xml
- Pyhf workspace
- JSON HistFactory
- CLs
- CLs

[GitHub link for cabinetry](https://github.com/alexander-held/cabinetry)

Building and steering template fits with cabinetry

Alex Held vCHEP 2021
New columnar data analysis concepts!

User just needs to define a high-level wrapper around user analysis code: the coffea processor and coffea framework will take care of everything incl. scaling-out

Smith, Nicholas, Lindsey Gray, Matteo Cremonesi, Bo Jayatilaka, Oliver Gutsche, Allison Hall, Kevin Pedro et al. "COFFEA Columnar Object Framework For Effective Analysis." https://doi.org/10.1051/epjconf/202024506012

https://github.com/CoffeaTeam/coffea
Persisting non-event data

- We want a service that can decide when to cache function output
- Necessary ingredient: persist-able function definitions
 - Bonus: analysis preservation?
- Coffea distributed executors all use cloudpickle
- No forward or backward compatibility guarantees for pickled python functions
- Good for getting user code to scale-out mechanisms, bad for persistence
- CorrectionLib may be a possible solution
 - Store corrections in JSON format with a flexible schema
 - Implement evaluator(s)
 - High-performance scalar function evaluator provided by library
 - High-level types handled by extension libraries
 - Join the fun: https://github.com/cms-nanoAOD/correctionlib

```python
def f(args: Union[str, int, float]) -> float:
    return ...

double Correlation::evaluate(const std::vector<std::variant<int, double, std::string>>& values) const;
```

Columnservice prototype

- Manage the metadata of individual column objects and help clients build array chunks for processing
- Originally a k8s service with integrated dask cluster, now considering more lightweight solutions
 - Ideally ship columnservice with coffea, with e.g. SQLite for local and Postgres for site installs
- User provides dask cluster, site provides object store (off the shelf)

..and many more interesting developments!

HSF DAWG: Metadata discussions - Nick Smith
https://indico.cern.ch/event/993424/
R&D on various services and facilities as a demonstration of several technologies under development for use in HL-LHC analysis
ServiceX is a scalable HEP event data extraction, transformation and delivery system (it provides user level ntupule production)

- Converts experiment-specific datasets to columns: ATLAS xAOD/DAOD, CMS NanoAOD, ROOT Flat Ntuple
- Enable simple cuts or simple derived columns and fields
- Delivery: deliver to a user or stream into Analysis System
- Scalable: runs on any Kubernetes cluster, scales up workers when necessary

ServiceX doc

https://github.com/ssl-hep

"Towards Real-World Applications of ServiceX, an Analysis Data Transformation System" Kyungeon Choi vCHEP

Can be easily deployed on the local computer as well in analysis facility!
Broader ecosystem: analysis facility services development

Coffea-casa: an analysis facility prototype', vCHEP 2021 plenary

A SWAN session gives access to limited (shared) resources
- CPU, memory
- Not intended for heavy, long-running computation
- Heavy computations should be offloaded

SWAN can be used as the entry point to access computational resources
- Examples: the Grid, Spark clusters, GPUs, HPC clusters (soon)

"Introduction to SWAN" - Diogo C., Prasanth K., Enric T., on behalf of the SWAN team
https://indico.cern.ch/event/847492/

https://swan.cern.ch

GPUs for SWAN

- GPUs are available in the pilot instance of SWAN on Kubernetes at https://swan-k8s.cern.ch
 - It will become the default instance at https://swan.cern.ch

- In the pilot instance in CERN cloud, we are offering 5 GPUs (4x Tesla T4 + 1x V100)
 - If there is demand, we will ask for more from CERN cloud

- Software packages from CVMFS
 - The latest release (99 Cuda 10.1 Python3) has Tensorflow 2.3.0 and PyTorch 1.4.0
 - Other releases have older versions Tensorflow 2.1.0 etc

- How are the resources shared?
 - The user gets 1 GPU, 2 cores and 16 GB RAM from the available pool
 - Users are removed after 6 hours of inactivity
Conclusions

The life of analysts will be significantly *better* in 2027 (HL-LHC):

- Heavily data science technique/concept driven
- Less code and more expressive
- Easier scaling to cluster and other computing resources
- *The ultimate goal is to develop high-throughput, low-latency analysis systems to be able to handle data collected during HL-LHC era*