Heavy flavor collectivity in small systems

G. K. Krintiras (cern.ch/gkrintir) on behalf of CMS/ALICE/ATLAS Collaborations

The University of Kansas
Collectivity in small systems?

- Detailed flow measurements in pp/pPb indicate that
 - centrality/event activity and \(p_T \) dependence qualitatively similar to that in AA
 - identified particle and multiparticle correlation techniques support a collective origin of \(v_n \)
 - encompassed by hydrodynamical models, but not a unique description

- We start answering whether a collective component in \(v_n \) exists by studying
 - the role of the initial conditions
 - the impact of hard-scattering processes and energy loss
 - alternative systems, e.g., ultraperipheral collisions (UPC)

![Graph showing \(v_2 \) measurements in various collision conditions](image)
Key features of heavy flavor measurements

- Variety of meson/baryon states with different flavors in a broad kinematic range
 - techniques to separate heavy from light flavor decays

- We gain insight on
 - whether heavy quarks flow with the bulk
 - parton interactions in the QGP (thermalization, energy loss,...)
 - QGP properties (transport coeff)
 - pQCD predictions, parton shower modeling, hadronization mechanisms

PRL 126 (2021) 162001

PRL 124 (2020) 082301

PLB 813 (2021) 136036
Measuring HF particle flow in PbPb

Heavy-flavor hadrons and their decay products are effective probes of QGP

- a series of measurements with, e.g., D^0, J/ψ, $\Upsilon(nS)$, and heavy-flavor decay leptons

- extension to studies of EM fields effects, e.g., no rapidity dependence of Δv_2 ($D^0-\bar{D}^0$)

- The harmonics for c mesons are comparable to the light-flavor hadrons

- Closer to zero anisotropy observed for nonprompt D^0, $\Upsilon(nS)$ or beauty decay electrons/muons

CMS-PAS-HIN-20-001

PRL 126 (2021) 162001

PLB 819 (2021) 136385

PLB 807 (2020) 135595
Observation of c flow

- the number-of-constituent-quark (n_q) scaling holds for $K E_T/n_q < 1 \text{ GeV}$
- model with final-state interactions underestimates the v_2 signal

First measurements of b flow

- indication of flavor hierarchy between light, charm, and beauty at low p_T
- qualitative agreement with CGC calculations and data → an important role for initial-state effects?

PLB 791 (2019) 172

PLB 813 (2021) 136036
First measurements of c and b flow

- no dependency on track multiplicity
- charm \(v_2 > 0 \) decreasing with \(p_T \) (similar to charged hadrons)
- bottom \(v_2 - 0 \)

No calculation yet available in the smallest systems

- in PbPb we can describe the larger \(v_2 \) for D than B mesons at \(p_T < 10 \) GeV while being similar above

\[\text{PRL 124 (2020) 082301} \]
Comparing HF particle flow in all systems

There is charm anisotropy... everywhere

- apparent ordering: \(v_2 \) (PbPb) > \(v_2 \) (pPb) > \(v_2 \) (pp)
 - so system size should play a role?

For open bottom hadrons: \(v_2 \) (PbPb) > 0 but \(v_2 \) (pPb) - \(v_2 \) (pp) - 0

- do we hit some threshold between charm and beauty processes?

Novel input to the description of heavy-quark transport and energy loss in small systems

C. Mironov (HP2020)
New measurements of Λ_c^+ cross section **down to** $p_T = 0$

- significant difference wrt to pp in $\Lambda_c^+/D^0 \to$ radial flow or multiplicity dependence of hadronization?
 - challenging further the universality of hadronization process
- $R_{pPb} > 1$ for $4 < p_T < 8$ GeV → radial flow or hadronization?
 - similarities with the strange sector
- significant suppression for $p_T < 2$ GeV/c
 - precision of Λ_c^+/D^0 and R_{pPb} measurements **improved** thanks to the pPb (2016) and pp ref samples
Long-range angular correlations in heavy ion as well as high-multiplicity pPb&pp collisions identified particle and multiparticle correlation techniques support a collective origin of v_n

Comprehensive studies of heavy flavor collectivity in all systems

- c quark flow is comparable to light quark whereas that of b quarks closer to 0 in PbPb
- charm v_2 in pPb&pp is significant, but lower than in PbPb
- b flows in PbPb, but seems not in pPb or pp

Future data with improved precision will provide crucial insights

- for example Λ_c^+/D^0 and $\Lambda_c^+ R_{pPb}$ measurements improved thanks to the pPb (2016) and pp ref samples
Long-range ($2 < |\Delta \eta| < 4$), near-side ($\Delta \phi \approx 0$) angular correlations are seen at LHC at various \sqrt{s} in

- heavy ion (XeXe and PbPb), and
- “small systems”, i.e., high-multiplicity pPb and pp collisions

Signs reminiscent of collective behavior of a quark-gluon plasma (QGP)

JHEP 09 (2010) 091 (also in [1])
PLB 718 (2013) 795 (also in [2])
JHEP 07 (2011) 076 (also in [3])
Understanding collectivity in small systems

- Correlation between v_n and the event mean p_T (radial flow) sensitive to initial conditions
 - $v_2 - [p_T]$ in pPb favors a more compact initial state \rightarrow stronger flow and prominent ridge
- Process-dependent v_n can distinguish complementary particle production mechanisms
 - $v_{2,3}$ similarity (ordering) in MB vs jet-triggered pPb events indicative of flow (soft+hard admixture)
 - v_{2-4} largely independent of whether measured in jet enriched/depleted pp events [8]
- Photonuclear collisions in UPC offer an alternative dynamics of small systems
 - competing explanations can be tested in cases one of the “beams” has a simpler initial state
 - both ATLAS and CMS see significant v_2 in UPC PbPb [9] and pPb collisions, respectively

Schenke et al, PRC 102 (2020) 034905

EPJ C 80 (2020) 73

CMS-PAS-HIN-18-008
Flow harmonics in heavy ion collisions

- Detailed measurements of up to v_7 (v_6) in PbPb (XeXe [4, 5]) collisions
 - found positive with their magnitude dependent on the particle species and method of calculation
 - heavier particles “flow more”; level of nonflow suppression and flow fluctuations impact v_n
 - centrality dependence – v_n are the largest in the 20-50% central events
 - $v_{n>3}$ show a weaker dependence
 - p_T dependence – an increase up to 3 GeV, depending on centrality, and then gradually decreasing
 - empirical scaling behaviors seen
 - for fixed n same scaled shape as a function of scaled p_T across centrality
 - the ratio $(v_n/v_m)^{n/m}$ for two harmonics m and n is independent of p_T in a given centrality

EPJ C 78 (2018) 997 (also in [6])
Prompt D⁰ v₂ in pp and Υ(nS) v₂ in PbPb

- **First** measurement with high-multiplicity events in pp
 - v₂ ≠ 0; close to the v₂ of light flavors

- Flow of bottomonia in PbPb
 - Precise Υ(1S) v₂ consistent with 0
 - **First** Υ(2S) v₂ measurement consistent with 0 too
 - in contrast to larger J/ψ v₂
Prompt D^0 v_2 and v_3 in PbPb

- Multidifferential in p_T, $|y|$, and centrality
 - v_2, v_3 as expected from collision geometry
- Search for strong EM fields effects
 - **no** sign of rapidity dependence of $\Delta v_2 (D^0-\bar{D}^0)$

(accepted by PLB)
Flow harmonics in XeXe collisions

- Detailed measurements of v_2-v_6
 - p_T dependence similar to that in PbPb
 - Centrality dependence – v_2 higher (lower) than PbPb in most central (peripheral) events
 - Weaker dependence with higher n
 - Qualitatively consistent with theoretical predictions
 - Scaling behaviors from PbPb observed to hold in XeXe too
 - XeXe v_n and the cross-system comparisons an opportunity to improve the current modeling

![Graph showing v_n vs. centrality for XeXe and PbPb collisions](image)
Reconstruction of muons from c and b hadron decays separated from π/K bkg using

- the momentum imbalance $\rho = (p_{\text{ID}} - p_{\text{MS}})/p_{\text{ID}}$
- between the inner detector and muon spectrometer
- real muons have a ρ distribution peaked around zero
- π/K bkg a broader ρ shifted towards higher values
- the transverse impact parameter d_0
- different d_0 due to c and b hadrons’ decay lengths