

7-12 June 2021

Collectivity of soft probes in heavy-ion collisions Highlights from ALICE, ATLAS, and CMS

Vytautas Vislavicius, Niels Bohr Institute, DK

BENHAVN UNIVERSITET

THE VELUX FOUNDATIONS VILLUM FONDEN 💥 VELUX FONDEN

From collision to particle production

Overlap between colliding nuclei: \Rightarrow Initial state, geometry & its fluctuations

Hydrodynamical expansion of QGP: ⇒ Radial and anisotropic flow, sensitive to initial state and properties of QGP

Freeze-out and hadronization:

 \Rightarrow Bulk particle production in a thermalised medium, sensitive to fireball volume and temperature

Radial vs. elliptic flow in heavy-ion collisions

 p_T -differential p/ π ratio:

• Multiplicity-dependent "boost" of the ratio towards higher p_T \Rightarrow Dominantly driven by $\langle dN_{ch}/d\eta \rangle$, slightly larger in Xe-Xe than in Pb—Pb (but comparable) \Rightarrow Smaller volume \rightarrow larger average p_T

Sketch from G. Giacalone, Phys. Rev. C 102, 024901 (2020)

Radial vs. elliptic flow in heavy-ion collisions

 p_{T} -differential p/ π ratio:

• Multiplicity-dependent "boost" of the ratio towards higher p_{T} \Rightarrow Dominantly driven by $\langle dN_{ch}/d\eta \rangle$, slightly larger in Xe-Xe than in Pb—Pb (but comparable) \Rightarrow Smaller volume \rightarrow larger average p_T

 v_2 in Pb—Pb and Xe—Xe:

 Significantly larger in Pb—Pb even at comparable $\langle dN_{ch}/d\eta \rangle \Rightarrow$ Sensitive to initial geometry

Sketch from G. Giacalone, arXiv:2101.00168 [nucl-th]

Correlation between v_n and $[p_T]$

- Shape of the fireball: anisotropic flow, $\varepsilon_n \to v_n$
- Size of the fireball: radial flow, $[p_T]$, $1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between v_n and $[p_T]$

For deformed nuclei

• Significantly smaller ρ_2 in central Xe-Xe, compared to Pb-Pb \Rightarrow Deformation β reduces ρ_2

• Study with Pearson correlation coefficient: v_n^2 , $[p_T]$ COV $\rho_n\left(v_n^2,\left[p_T\right]\right) =$ Var (v_n^2)

 $= \frac{D_0}{1 + e^{\left(r - R_0 \left(1 + \beta Y_{20}\right)\right)/a}}$ 0.3 $D_{WS}(r) = -$ Trento $\langle p_t
angle
angle$ $v_{2}^{2},$ 0.0-Au+Au -0.1••••Xe+Xe $\beta > 0$ **— —** U+U -0.2^{L}_{O} 2040 $Pb-Pb: \beta \approx 0$ υ centrality [%] Xe-Xe: $\beta \approx 0.16$ G. Giacalone, Phys. Rev. C 102, 024901 (2020)

Correlation between v_n and $[p_T]$

- Shape of the fireball: anisotropic flow, $\varepsilon_n \to v_n$
- Size of the fireball: radial flow, $[p_T]$, $1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between v_n and $[p_T]$

For deformed nuclei

• Significantly smaller ρ_2 in central Xe—Xe, compared to Pb—Pb \Rightarrow Deformation β reduces ρ_2

Probing the initial state

• Low multiplicity: geometry → initial momentum correlations \Rightarrow Change of slope sign \rightarrow presence of CGC?

• Study with Pearson correlation coefficient: COV $\rho_n\left(v_n^2,\left[p_T\right]\right)$ var

6

- ATLAS: significant difference between Pb—Pb and Xe—Xe
- TRENTo: the difference between Pb—Pb and Xe—Xe in central collisions captured by the model with $\beta = 0.18$; underestimates the data in more peripheral collisions
- CGC+Hydro: no significant difference between Pb-Pb & Xe-Xe

ALICE vs. ATLAS:

- Evolution with centrality less pronounced in ALICE
- But different centrality estimator + different kinematic cuts
- ρ_2 sensitive to collision system, centrality & kinematics

Comparison to models:

- Central collisions agree with data, tension in peripheral
- No quantitative description

Modeling:

- Measure v_2 as a function of $([p_T] \langle [p_T] \rangle) / \langle [p_T] \rangle$ in most central collisions
- Pb—Pb (no deformation): flat
- Xe-Xe: v_2 larger in events with smaller $[p_T]$

ALICE:

- Pb—Pb and Xe—Xe significantly different
- Xe—Xe best described with $\beta = 0.16$

G. Giacalone, Phys. Rev. C 102, 024901 (2020)

$\rho(v_2^2, [p_T])$ at low multiplicity

 $\rho(v_2^2, [p_T])$ in Pb—Pb in ALICE:

- Slope changes around N_{ch} of 100 \Rightarrow IP-Glasma slope changes around 20 ch. tracks
- Both AMPT and IP-Glasma+hydro predict slope change
 ⇒ Not unique for CGC?
- No quantitative description

PCC in pp:

- Decreasing trend with N_{ch}, HM-triggered data consistent with Pb—Pb
- Underestimated by AMPT, overestimated by PYTHIA

PCC in Pb—Pb by ATLAS also available at: ATLAS-CONF-2021-001

10 AMPT for Pb—Pb: S.H.Lim, J.L. Nagle, arXiv:2103.01348

Longitudinal decorrelation of azimuthal flow

Longitudinal decorrelation in Xe—Xe:

Measure decorrelation as: \bullet

 \Rightarrow probes decorrelation between $-\eta$ and η

- Approx. linear decrease with increasing separation \bullet
- Decorrelation for 3rd and 4th harmonic significantly \bullet stronger than that for 2nd harmonic

 $\eta_{\rm ref}$ $\eta_{\rm ref}$

Longitudinal decorrelation of azimuthal flow

- Approx. linear decrease with increasing separation

Flow of strange particles in Pb—Pb and p—Pb collisions

First measurement of K_{S}^{0} and Λ flow in p—Pb collisions: \Rightarrow Large non-flow in p—Pb, suppressed by higher order correlations

 \Rightarrow Flow fluctuations larger in p—Pb with respect to Pb—Pb, no obvious species dependence

Flow of nuclei in Pb—Pb collisions

First measurement of ³He flow in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV: \Rightarrow Rising trend up to 6 GeV/*c*, smaller than that in $\pi/K/p$ \Rightarrow Hydro + coalescence provide good description of the data

Summary

Correlations between $[p_T]$ and v_2 :

- Models with deformed Xe nuclei provide a better description of the data
- Slope change of $\rho(v_2^2, [p_T])$ at low N_{ch} not unique to CGC-based models

Longitudinal decorrelation of azimuthal flow:

- Stronger for n > 2 harmonics, centrality dependence
- Ratio between Xe—Xe and Pb—Pb not described by current hydro models

Flow measurements:

- First measurements of strange particle v_2 in p—Pb collisions at 8.16 TeV \Rightarrow Fluctuations larger in p—Pb compared to Pb—Pb, no obvious species dependence
- First measurements of ${}^{3}\text{He} v_{2}$:
 - \Rightarrow Well-described by hydrodynamics + coalescence

Modeling:

- Measure v_2 as a function of $([p_T] \langle [p_T] \rangle) / \langle [p_T] \rangle$ in most central collisions
- Pb—Pb (no deformation): flat
- Xe-Xe: v_2 larger in events with smaller $[p_T]$

Initial state: shape vs. size

$$\Rightarrow \langle \varepsilon_n^2 \frac{1}{R} \rangle \to \langle v_n^2 \cdot [p_{\mathrm{T}}] \rangle$$

Flow of K_{S}^{0} in Pb—Pb and p—Pb collisions

First measurement of strange particle flow in p—Pb collisions

Pearson Correlation Coefficient at low multiplicity

PCC in Pb—Pb in ALICE:

- Slope changes around N_{ch} of 100 \Rightarrow IP-Glasma slope changes around 20 ch. tracks
- Both AMPT and IP-Glasma+hydro predict slope change
 ⇒ Not unique for CGC?
- No quantitative description

PCC in pp:

- Decreasing trend with N_{ch}, HM-triggered data consistent with Pb—Pb, MB above
 ⇒ Sensitive to event selection
- Underestimated by AMPT, overestimated by PYTHIA

- PCC in Pb—Pb in ATLAS:
- Slope change only present for smaller η -gal

 \Rightarrow Non-flow or decorrelation?

Radial vs. elliptic flow in heavy-ion collisions

 p_{T} -differential p/ π ratio:

• Multiplicity-dependent "boost" of the ratio towards higher p_T \Rightarrow Dominantly driven by $\langle dN_{ch}/d\eta \rangle$, slightly larger in Xe-Xe than in Pb—Pb (but comparable) \Rightarrow Smaller volume \rightarrow larger [p_T]

Flow of strange particles in Pb-Pb and p-Pb collisions

First measurement of K_S^0 and Λ flow in p—Pb collisions \Rightarrow Large non-flow in p—Pb, suppressed by higher order correlations

Flow of strange particles in Pb—Pb and p—Pb collisions

First measurement of K_S^0 and Λ flow in p—Pb collisions \Rightarrow Large non-flow in p—Pb, suppressed by higher order correlations \Rightarrow Flow fluctuations larger in p—Pb w.r.t. Pb—Pb, no obvious species dependence

Flow of strange particles in Pb-Pb and p-Pb collisions

First measurement of K_S^0 and Λ flow in p—Pb collisions: \Rightarrow Large non-flow in p—Pb, suppressed by higher order correlations

Flow of strange particles in Pb—Pb and p—Pb collisions

First measurement of K_S^0 and Λ flow in p—Pb collisions: \Rightarrow Large non-flow in p—Pb, suppressed by higher order correlations

Flow of heavy mesons D⁰

Heavy flavours: produced in hard scatterings, but thermalise inside QGP \Rightarrow Probes the full evolution of QGP

• $v_2\{2\} > v_2\{4\} \Rightarrow affected by initial$

geometry and its fluctuations

Effect similar to that seen for all charged particles

Model comparisons:

Energy loss (high- p_T) and Langevin (low- p_T) provide only qualitative description

$\rho(v_2^2, [p_T])$ at low multiplicity

PCC in Pb—Pb in ALICE:

- Slope changes around N_{ch} of 100 \Rightarrow IP-Glasma slope changes around 20 ch. tracks
- Both AMPT and IP-Glasma+hydro predict slope change
 ⇒ Not unique for CGC?
- No quantitative description

PCC in pp:

- Decreasing trend with N_{ch}, HM-triggered data consistent with Pb—Pb, MB above
 ⇒ Sensitive to event selection
- Underestimated by AMPT, overestimated by PYTHIA

$\rho(v_2^2, v_3^2, [p_T])$

Correlation of multiple harmonics with $[p_T]$:

- More sensitivity to initial state?
- Additional constrains on HI modelling

Glauber+MUSIC: P. Bozek, arXiv:2103.15338

ALI-PREL-491940

Modeling:

- Measure v_2 as a function of $([p_T] \langle [p_T] \rangle) / \langle [p_T] \rangle$ in most central collisions
- Pb—Pb (no deformation): flat
- Xe-Xe: v_2 larger in events with smaller $[p_T]$

ALICE:

- Pb—Pb and Xe—Xe significantly different
- Xe—Xe best described with $\beta = 0.16$

ALI-PREL-491910

