Nuclear shadowing and heavy ion UPCs at the LHC

Vadim Guzey
Petersburg Nuclear Physics Institute (PNPI), National Research Center "Kurchatov Institute",
Gatchina, Russia

Based on series of papers with E. Kryshen, M. Zhalov, M. Strikman, L. Frankfurt, M. Klasen

Outline:

- Nuclear shadowing: global fits vs. leading twist model
- Gluon nuclear shadowing from coherent J / ψ photoproduction in Pb-Pb UPCs at the LHC
- Gluon nuclear shadowing from inclusive and diffractive dijet photoproduction in Pb-Pb UPCs at the LHC

9th Edition of the Large Hadron Collider Physics Conference (LHCP2021), online, June 7-12, 2021

Gluon shadowing at small x: global fits

- Nuclear shadowing: suppression of nuclear cross sections and nuclear parton distribution functions (nPDFs) for small $x<0.05, \mathrm{f}_{\mathrm{A}}\left(\mathrm{x}, \mu^{2}\right)<\mathrm{A} \mathrm{f}_{\mathrm{N}}\left(\mathrm{x}, \mu^{2}\right)$
- Important for QCD phenomenology of hard processes with nuclei at RHIC, LHC, future EIC, LHeC/FCC \rightarrow cold nuclear matter effects, gluon saturation.
- $\mathrm{f}_{\mathrm{A}}\left(\mathrm{x}, \mu^{2}\right)$ are determined from global QCD fits to data on fixed-target DIS, hard processes in $d A(R H I C)$ and $p A(L H C) \rightarrow f_{A}\left(x, \mu^{2}\right)$ with significant uncertainties

Run 2 CMS jets, Eskola, Paakkinen, Paukkunen, EPJC 79 (2019) 6, 511

Leading twist model of nuclear shadowing

- Alternative to extrapolation of nPDFs into $x<0.05$ region: leading twist model of nuclear shadowing, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255
- Combination of Gribov-Glauber shadowing model with QCD factorization theorems for inclusive and diffractive DIS, Frankfurt, Strikman, EPJ A5 (1999) 293

diffractive
exchange
$x f_{j / A}\left(x, Q_{0}^{2}\right)=A x f_{j / N}\left(x, Q_{0}^{2}\right)-8 \pi A(A-1) \Re e \frac{(1-i \eta)^{2}}{1+\eta^{2}} B_{\text {diff }} \int_{x}^{0.1} d x_{\mathbb{P}} \beta f_{j}^{D(3)}\left(\beta, Q_{0}^{2}, x_{\mathbb{P}}\right)$

$$
\times \int d^{2} b \int_{-\infty}^{\infty} d z_{1} \int_{z_{1}}^{\infty} d z_{2} \rho_{A}\left(\vec{b}, z_{1}\right) \rho_{A}\left(\vec{b}, z_{2}\right) e^{i\left(z_{1}-z_{2}\right) \times x_{\mathbb{P}} m_{N}} e^{-\frac{A}{2}(1-i \eta) \sigma_{\text {soft }}^{j}\left(x, Q_{0}^{2}\right) \int_{z_{1}}^{z_{2}} d z^{\prime} \rho_{A}\left(\vec{b}, z^{\prime}\right)}
$$ from HERA

Leading twist model of nuclear shadowing (2)

- Predicts nuclear PDFs at $\mu^{2}=3-4 \mathrm{GeV}^{2} \rightarrow$ input for DGLAP evolution.
- Magnitude of shadowing is determined by proton diffractive PDFs, ZEUS, H1 $2006 \rightarrow$ naturally predicts large shadowing for $g_{A}\left(x, \mu^{2}\right)$.

-Future Electron-Ion Collider can best test these predictions due to:
- wide $\mathrm{x}-\mathrm{Q}^{2}$ coverage
- measurements of the longitudinal structure function $\mathrm{FL}^{\mathrm{A}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ sensitive to gluons
- measurements of diffraction in eA DIS
-Different approaches to shadowing can also be studied in UPCs@LHC, which can be viewed as a forerunner of EIC.

Impact parameter dependence of nPDFs

- The model of leading twist nuclear shadowing allows one to predict the dependence of nPDFs on the impact parameter b:

$$
\begin{aligned}
x f_{j / A}\left(x, Q_{0}^{2}, b\right)= & A T_{A}(b) x f_{j / N}\left(x, Q_{0}^{2}\right)-8 \pi A(A-1) B_{\text {diff }} \Re e \frac{(1-i \eta)^{2}}{1+\eta^{2}} \int_{x}^{0.1} d x_{\mathbb{P}} \beta f_{j}^{D(3)}\left(\beta, Q_{0}^{2}, x_{\mathbb{P}}\right) \\
& \times \int_{-\infty}^{\infty} d z_{1} \int_{z_{1}}^{\infty} d z_{2} \rho_{A}\left(\vec{b}, z_{1}\right) \rho_{A}\left(\vec{b}, z_{2}\right) e^{i\left(z_{1}-z_{2}\right) x \mathbb{x} m_{N}} e^{-\frac{A}{2}(1-i \eta) \sigma_{\text {sfft }}^{j}\left(x, Q_{0}^{2}\right) \int_{z_{1}}^{z_{2}} d z^{\prime} \rho_{A}\left(\vec{b}, z^{\prime}\right)}
\end{aligned}
$$

$\cdot \rightarrow$ correlations between b and $\mathrm{x} \rightarrow$ shadowing is stronger in nucleus center \rightarrow shift of t-dependence of $\gamma \mathrm{A} \rightarrow \mathrm{J} / \psi \mathrm{A}$ cross section \rightarrow confirmed by LHC data on coherent J / ψ photoproduction in $\mathrm{Pb}-\mathrm{Pb}$ UPCs (see later).

- With additional assumptions, global QCD fits can also extract b-dependence of nPDFS, EPS09s, Helenius, Honkanen, Salgado, JHEP 1207 (2012) 073.

Ultraperipheral collisions

- Ultraperipheral collisions (UPCs): ions interact at large impact parameters $b \gg R_{A}+R_{B} \rightarrow$ hadron interactions suppressed \rightarrow interaction via quasi-real photons in Weizsäcker-Williams equivalent photon approximation, Budnev, Ginzburg, Meledin, Serbo, Phys. Rept. 15 (1975) 181

- UPCs can be used to study open questions of proton and nucleus structure in QCD and search for new physics \rightarrow

a e.g., new info on gluon nuclear shadowing.

Exclusive J/ ψ photoproduction in UPCs

- Cross section of coherent J / ψ photoproduction in Pb-Pb UPCs \rightarrow two terms corresponding to low-x and high-x

Photon flux from QED:

- high intensity ~ Z²
- high photon energy $\sim \gamma_{L}$

Photoproduction cross section

$$
y=\ln \left[W^{2} /\left(2 \gamma_{L} m_{N} M_{V}\right)\right]
$$

$$
=\mathrm{J} / \psi \text { rapidity }
$$

- In leading logarithmic approximation (LLA) of pQCD, Ryskin, z. Phys. C57 (1993) 89; Frankfurt, Koepf, Strikman, PRD 57 (1998) 512; Frankfurt, McDermott, Strikman, JHEP 03 (2001) 045

$$
\begin{gathered}
\frac{d \sigma^{\gamma p \rightarrow J / \psi p}(t=0)}{d t}=\frac{12 \pi^{3}}{\alpha_{\text {e.m. }}} \frac{\Gamma_{V} M_{V}^{3}}{\left(4 m_{c}^{2}\right)^{4}}\left[\alpha_{s}\left(Q_{\text {eff }}^{2}\right) x g\left(x, Q_{\text {eff }}^{2}\right)\right]^{2} C\left(Q^{2}=0\right) \\
\downarrow \\
\mathrm{x}=(\mathrm{Mv})^{2} / \mathrm{W}^{2}, \mathrm{Q}_{\mathrm{eff}}{ }^{2}=2.5-4 \mathrm{GeV}^{2} \quad \begin{array}{l}
\text { depends on details of charmonium } \\
\text { distribution amplitude }
\end{array}
\end{gathered}
$$

Coherent J/ ψ photoproduction on nuclei

- Application to nuclear targets:

$$
\sigma_{\gamma A \rightarrow J / \psi A}\left(W_{\gamma p}\right)=\kappa_{A / N}^{2} \frac{d \sigma_{\gamma p \rightarrow J / \psi p}\left(W_{\gamma p}, t=0\right)}{d t}\left[\frac{G_{A}\left(x, \mu^{2}\right)}{A G_{N}\left(x, \mu^{2}\right)}\right]^{2} \Phi_{A}\left(t_{\min }\right)
$$

Small correction $\mathrm{k}_{\mathrm{A} N} \approx 0.90-95$ due to different skewnesses of nuclear and nucleon generalized PDFs (GPDs)

From HERA and LHCb

- Well-defined impulse approximation (IA):

$$
\sigma_{\gamma A \rightarrow J / \psi A}^{\mathrm{IA}}\left(W_{\gamma p}\right)=\frac{d \sigma_{\gamma p \rightarrow J / \psi p}\left(W_{\gamma p}, t=0\right)}{d t} \Phi_{A}\left(t_{\min }\right)
$$

- Nuclear suppression factor S (like $R_{p A}$ or $\left.R_{A A}\right) \rightarrow$ direct access to R_{g}

$$
S\left(W_{\gamma p}\right)=\left[\frac{\sigma_{\gamma P b \rightarrow J / \psi P b}}{\sigma_{\gamma P b \rightarrow J / \psi P b}^{\mathrm{IA}}}\right]^{1 / 2}=\kappa_{A / N} \frac{G_{A}\left(x, \mu^{2}\right)}{A G_{N}\left(x, \mu^{2}\right)}=\kappa_{A / N} R_{g}
$$

Model-independently* from data on UPC@LHC at (ALICE, CMS, LHCb) and HERA, LHCb Abelev et al. [ALICE], PLB718 (2013) 1273; Abbas et al. [ALICE], EPJ C 73 (2013) 2617; [CMS] PLB 772 (2017) 489; Acharya et al [ALICE], arXiv:2101:04577 [nucl-ex]

From global QCD fits or leading twist nuclear shadowing model
Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290, Guzey, Zhalov, JHEP 1310 (2013) 207

Spb from ALICE and CMS UPC data vs. theory

- Model-independently at $\mathrm{y}=0$ and mostly large-x at forward |y|, Abelev et al. [ALICE], PLB718 (2013) 1273; Abbas et al. [ALICE], EPJ C 73 (2013) 2617; CMS Collab., PLB 772 (2017) 489, Acharya et al [ALICE], arXiv:2101:04577 [nucl-ex] \rightarrow suppression factor Spb

LTA: Guzey, Zhalov JHEP 1310 (2013) 207 EPS09: Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065
HKN07: Hirai, Kumano, Nagai, PRC 76 (2007) 065207
nDS: de Florian, Sassot, PRD 69 (2004) 074028

- Good agreement with ALICE data at 2.76 and $5.02 \mathrm{TeV} \rightarrow$ direct evidence of large gluon shadowing, $\mathrm{R}_{\mathrm{g}}\left(\mathrm{x}=6 \times 10^{-4}-0.001\right) \approx 0.6$, predicted by the LT model.
- Also good description using central value of EPS09, EPPS16, large uncertainty.
- Color dipole models generally underestimate the suppression, Goncalves, Machado (2011); Lappi, Mäntysaari, 2013, but proton shape fluctuations help, Mäntysaari, Schenke, PLB 772 (2017) 681

Imaging of nuclear gluons at small x

- In case of non-negligible nuclear shadowing, $\gamma \mathrm{A} \rightarrow \mathrm{J} / \psi \mathrm{A}$ cross section should be modified:

$$
\begin{aligned}
& \frac{d \sigma_{\gamma A \rightarrow J / \psi A}}{d t}=\frac{d \sigma_{\gamma p \rightarrow J / \psi p}(t=0)}{d t}\left(\frac{R_{g, A}}{R_{g, p}}\right)^{2}\left(\frac{g_{A}\left(x, \mu^{2}\right)}{A g_{p}\left(x, \mu^{2}\right)}\right)^{2} F_{A}^{2}(t) \\
& \frac{d \sigma_{\gamma A \rightarrow J / \psi A}}{d t}=\frac{d \sigma_{\gamma p \rightarrow J / \psi p}(t=0)}{d t}\left(\frac{R_{g, A}}{R_{g, p}}\right)^{2}\left(\frac{g_{A}\left(x, t, \mu^{2}\right)}{A g_{p}\left(x, \mu^{2}\right)}\right)^{2}
\end{aligned}
$$

- Answer in terms of nuclear GPD in the $x_{1}=x_{2}$ limit, i.e. in terms of impact-parameter-dependent nPDF $\mathrm{f}_{\mathrm{j}} \mathrm{A}\left(\mathrm{x}, \mathrm{Qo}^{2}, \mathrm{~b}\right)$, Guzey, Strikman, Zhalov, PRC 95 (2017) 025204
- Correlations between b and $\mathrm{x} \rightarrow$ shift of t -dependence of $\gamma \mathrm{A} \rightarrow \mathrm{J} / \psi \mathrm{A}$ cross section.

t-dependence of coherent J / ψ photonuclear cross section

Acharya et al. [ALICE] arXiv:2101.04623 [nucl-ex]
Guzey, Strikman, Zhalov, PRC 95 (2017) 025204

- Shift of t-dependence $=5-11 \%$ broadening in impact parameter space of gluon nPDF
- Similar effect is predicted to be caused by saturation, Cisek, Schafer, Szczurek, PRC86 (2012) 014905; Lappi, Mäntysaari, PRC 87 (2013) 032201; Toll, Ullrich, PRC87 (2013) 024913; Goncalves, Navarra, Spiering, arXiv:1701.04340

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC

- Cross section of dijet photoproduction using collinear factorization and next-toleading (NLO) pQCD, which is successful for HERA data on dijet photoproduction in ep scattering, Klasen, Kramer, Z.Phys. C 72 (1996) 107, Z. Phys. C 76 (1997) 67; Klasen, Rev. Mod. Phys. 74 (2002) 1221; Klasen, Kramer, EPJC 71 (2011) 1774

(a)
direct

$$
d \sigma(A A \rightarrow A+2 \text { jets }+X)=
$$

$$
\sum_{a, b} \int d y \int d x_{\gamma} \int d x_{A} f_{\gamma / A}(y) f_{a / \gamma}\left(x_{\gamma}, \mu^{2}\right) f_{b / A}\left(x_{A}, \mu^{2}\right) d \hat{\sigma}_{a b \rightarrow \mathrm{jets}}
$$

Photon flux from QED:

- high intensity ~ Z ${ }^{2}$
- high photon energy $\sim \gamma$ L
(b)

resolved

$\qquad \sum_{a, b} \int d y \int d x_{\gamma} \int d x_{A} f_{\gamma / A}(y) f_{a / \gamma}\left(x_{\gamma}, \mu^{2}\right) f_{b / A}\left(x_{A}, \mu^{2}\right) d \hat{\sigma}_{a b \rightarrow \text { jets }}$	
Photon flux from QED: - high intensity $\sim \mathrm{Z}^{2}$ - high photon energy $\sim \gamma \mathrm{L}$	Photon PDFs (resolved photon), from e+e- data

$$
\begin{gathered}
f_{\gamma / A}(y)=\frac{2 \alpha_{\mathrm{e} . \mathrm{m} .} \cdot Z^{2}}{\pi} \frac{1}{y}\left[\zeta K_{0}(\zeta) K_{1}(\zeta)-\frac{\zeta^{2}}{2}\left(K_{1}^{2}(\zeta)-K_{0}^{2}(\zeta)\right)\right] \\
\zeta=y m_{p} b_{\min } \approx y m_{p}\left(2 R_{A}\right)
\end{gathered}
$$

Nuclear PDFs
(nCTEQ15, EPPS16)

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC (2)

- NLO pQCD vs. ATLAS data as a function of the dijet transverse momentum $H_{T}=E_{T}{ }^{\text {jet1 }}+\mathrm{E}_{\mathrm{T}}{ }^{\text {jet2 }}$ and nuclear momentum fraction $\mathrm{x}_{\mathrm{A}}=\left(\mathrm{m}_{\text {jets }} / V_{S_{N N}}\right) \mathrm{e}^{\text {-yjets }}$

- Shape and normalization of the ATLAS data are reproduced well. Note that the data is preliminary and has not been corrected for detector response.

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC (3)

- Resolved vs. direct photon contributions: resolved photons dominate for $x_{A}>0.01$; resolved and direct are compatible for $x_{A}<0.01 \rightarrow$ similar trend in leading order (LO) analysis in PYTHIA8 framework, Helenius, Rasmusen, EPJ C 79 (2019) 5, 413

- Nuclear modifications: shape of $R=\frac{d \sigma(A A \rightarrow A+2 \text { jets }+X)}{d \sigma^{I A}(A A \rightarrow A+2 \text { jets }+X)}$
$f_{b / A}^{\mathrm{IA}}=Z f_{b / p}+(A-Z) f_{b / n}$ repeats that of $R_{g}(x)=g_{A} / A g_{N}$: 10% shadowing for $x_{A}<0.01$, 20% antishadowing at $x_{A} \sim 0.1$, $5-10 \%$ EMC effect for large x_{A} \rightarrow can be compared to predictions for EIC, Klasen, Kovarik, PRD 97 (2018) 114013

Reweighting of dijet UPC pseudo-data

- We used our NLO pQCD results in ATLAS kinematics as pseudo-data:

$$
\chi_{k}^{2}=\sum_{j=1}^{N_{\text {data }}} \frac{\left(d \sigma^{0} / d x_{A}-d \sigma^{k} / d x_{A}\right)^{2}}{\sigma_{j}^{2}}
$$

- Effect of the pseudo-data on the nuclear gluon distribution and its uncertainty:

- Assuming 5% error \rightarrow reduction of uncertainties by factor 2 at $x_{A}=0.001$.

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC

- In framework of collinear factorization \& NLO pQCD, it probes novel nuclear diffractive PDFs.
- Contribution of right-moving photon source:

$$
d \sigma(A A \rightarrow A+2 \mathrm{jets}+X+A)^{(+)}=
$$

(a)

(b)

$$
\sum_{a, b} \int d t \int d x_{P} \int d z_{P} \int d y \int d x_{\gamma} f_{\gamma / A}(y) f_{a / \gamma}\left(x_{\gamma}, \mu^{2}\right) f_{b / A}^{D(4)}\left(x_{P}, z_{P}, t, \mu^{2}\right) d \hat{\sigma}_{a b \rightarrow \mathrm{jets}}
$$

- Nuclear diffractive PDF $\mathrm{f}_{\mathrm{b} / \mathrm{A}^{\mathrm{D}}}{ }^{(4)=}=$ conditional probability to find parton b with mom. fraction Zp with respect to the diffractive exchange (pomeron) carrying mom. fraction XP provided the nucleus remained intact with mom. transfer t.
- $\mathrm{f}_{\mathrm{b} / \mathrm{A}} \mathrm{D}(4)$ is subject to nuclear modifications. The leading twist nuclear shadowing model predicts strong nuclear suppression (shadowing), Frankfurt, Guzey, Strikman, Phys.
Rept. 512 (2012) 255

$$
\begin{aligned}
f_{b / A}^{D(4)}\left(x_{P}, z_{P}, t, \mu^{2}\right) & =R_{b}\left(x_{P}, z_{P}, \mu^{2}\right) A^{2} F_{A}^{2}(t) f_{b / p}^{D(4)}\left(x_{P}, z_{P}, t=0, \mu^{2}\right) \\
& \approx 0.15 A^{2} F_{A}^{2}(t) f_{b / p}^{D(4)}\left(x_{P}, z_{P}, t=0, \mu^{2}\right)
\end{aligned}
$$

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC (2)

- NLO pQCD predictions as a function of momentum fractions $x \gamma$ and z_{p}, leading jet transverse momentum $\mathrm{E}_{\mathrm{T}}{ }^{\mathrm{jet} 1}$, and photon-nucleus energy W .

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC (3)

- Analyses of diffractive dijet photoproduction in ep scattering@HERA \rightarrow QCD factorization is broken, i.e., NLO calculations overestimate data by factor of ~ 2, Klasen, Kramer, EPJ C 38 (2004) 93; PRL 93 (2004) 232002; JPhys.G 31 (2005) 1391; MPLA 23 (2008) 1885; EPJ C 70 (2010) 91; PLB 508 (2001) 259; EPJ C 49 (2007) 957; PRD 80 (2009) 074006; Guzey, Klasen, EPJ C 76 (2016) 8, 467
- The pattern of unknown: either the global suppression factor $\mathrm{R}(\mathrm{glob})=$.0.5 or the resolved-only suppression R(res.)=0.34, Kaidalov, Khoze, Martin, Ryskin, EPJC 66 (2010) 373
- One can differentiate between these two scenarios by studying $x \gamma$ distribution in AA UPCs, Guzey, Klasen, JHEP 04 (2016) 158

Summary

- The gluon nuclear shadowing at small x is poorly constrained by available fixedtarget nuclear DIS, dA RHIC, and pA LHC data.
- The leading twist model makes predictions for nuclear shadowing in various nPDFs (usual, diffractive, b-dependent), which can be best tested at an EIC and LHeC.
- Before EIC and LHeC, new constrains on small-x nPDFs can obtained from Pb-Pb UPCs at the LHC: exclusive photoproduction of J / ψ, inclusive and diffractive dijet photoproduction.
- Coherent photoproduction of J / ψ in $\mathrm{Pb}-\mathrm{Pb}$ UPCs at LHC gives direct evidence of large gluon nuclear shadowing $\mathrm{Rg}_{\mathrm{g}}\left(\mathrm{x}=6 \times 10^{-4}-10^{-3}, \mu^{2} \approx 3 \mathrm{GeV}^{2}\right) \approx 0.6$ and can help to significantly reduce uncertainties in wide region of x.
- Heavy quarkonium photoproduction in UPCs gives access to transverse imaging of gluon distribution at small x.
- Inclusive dijet photoproduction in Pb-Pb UPCs@LHC probes nPDFs down to X_{A} ~ 0.005 and can reduce the current small- x_{A} uncertainties of the gluon distribution by factor of ~ 2.
- Diifractive dijet photoproduction in Pb-Pb UPCs@LHC accesses novel nuclear diffractive PDFs and may shed new light on mechanism of QCD factorization breaking in this process.

