Nuclear shadowing and heavy ion UPCs at the LHC

Vadim Guzey

Petersburg Nuclear Physics Institute (PNPI), National Research Center "Kurchatov Institute", Gatchina, Russia

Based on series of papers with E. Kryshen, M. Zhalov, M. Strikman, L. Frankfurt, M. Klasen

Outline:

- Nuclear shadowing: global fits vs. leading twist model
- Gluon nuclear shadowing from coherent J/ ψ photoproduction in Pb-Pb UPCs at the LHC
- Gluon nuclear shadowing from inclusive and diffractive dijet photoproduction in Pb-Pb UPCs at the LHC

9th Edition of the Large Hadron Collider Physics Conference (LHCP2021), online, June 7-12, 2021

- Lear Alternative to extrapolation of nPDFs into x < 0.05 region. leading twist model of nuclear (shadow(ng), Frankfur, Glovy, Strikmer, Phys. Rept. 517 (2012) 255
- Combination of Gribov-Glauber shadowing model with QCD factorization theorems for inclusive and diffractive DIS, Frankfurt, Strikman, EPJ A5 (1999) 293

Leading twist model of nuclear shadowing (2)

- Predicts nuclear PDFs at μ^2 =3-4 GeV² \rightarrow input for DGLAP evolution.
- Magnitude of shadowing is determined by proton diffractive PDFs, ZEUS, H1 2006 \rightarrow naturally predicts large shadowing for $g_A(x,\mu^2)$.

- Future Electron-Ion Collider can best test these predictions due to:
- wide x-Q² coverage
- measurements of the longitudinal structure function $F_{L}^{A}(x,Q^{2})$ sensitive to gluons
- measurements of diffraction in eA DIS
- Different approaches to shadowing can also be studied in UPCs@LHC, which can be viewed as a forerunner of EIC.

Impact parameter dependence of nPDFs

 The model of leading twist nuclear shadowing allows one to predict the dependence of nPDFs on the impact parameter b:

$$\begin{aligned} xf_{j/A}(x, Q_0^2, b) &= A T_A(b) xf_{j/N}(x, Q_0^2) - 8\pi A(A-1) B_{\text{diff}} \Re e \frac{(1-i\eta)^2}{1+\eta^2} \int_x^{0.1} dx_{\mathbb{P}} \beta f_j^{D(3)}(\beta, Q_0^2, x_{\mathbb{P}}) \\ &\times \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{\infty} dz_2 \,\rho_A(\vec{b}, z_1) \rho_A(\vec{b}, z_2) \, e^{i(z_1-z_2)x_{\mathbb{P}}m_N} e^{-\frac{A}{2}(1-i\eta)\sigma_{\text{soft}}^j(x, Q_0^2) \int_{z_1}^{z_2} dz' \rho_A(\vec{b}, z')} \end{aligned}$$

• \rightarrow correlations between b and x \rightarrow shadowing is stronger in nucleus center \rightarrow shift of t-dependence of $\gamma A \rightarrow J/\psi A$ cross section \rightarrow confirmed by LHC data on coherent J/ ψ photoproduction in Pb-Pb UPCs (see later).

• With additional assumptions, global QCD fits can also extract b-dependence of nPDFs, EPS09s, Helenius, Honkanen, Salgado, JHEP 1207 (2012) 073.

Ultraperipheral collisions

- Ultraperipheral collisions (UPCs): ions interact at large impact parameters b >> R_A+R_B \rightarrow hadron interactions suppressed \rightarrow interaction via quasi-real photons in Weizsäcker-Williams equivalent photon approximation, Budnev, Ginzburg, Meledin, Serbo, Phys. Rept. 15 (1975) 181
- UPCs@LHC allow one to study $\gamma\gamma$, γp and γA interactions at unprecedentedly high energies (energy frontier) reaching: $W_{\gamma p}=5$ TeV, $W_{\gamma A}=700$ GeV/A, $W_{\gamma \gamma}=4.2$ TeV
- UPCs can be used to study open questions of proton and nucleus structure in QCD and search for new physics → e.g., new info on gluon nuclear shadowing.

Exclusive J/ ψ photoproduction in UPCs

• Cross section of coherent J/ ψ photoproduction in Pb-Pb UPCs \rightarrow two terms corresponding to low-x and high-x

• In leading logarithmic approximation (LLA) of pQCD, Ryskin, Z. Phys. C57 (1993) 89; Frankfurt, Koepf, Strikman, PRD 57 (1998) 512; Frankfurt, McDermott, Strikman, JHEP 03 (2001) 045

$$\frac{d\sigma^{\gamma p \to J/\psi p}(t=0)}{dt} = \frac{12\pi^3}{\alpha_{\rm e.m.}} \frac{\Gamma_V M_V^3}{(4m_c^2)^4} \left[\alpha_s(Q_{\rm eff}^2) x g(x, Q_{\rm eff}^2)\right]^2 C(Q^2=0)$$

 $x=(M_V)^2/W^2$, Q_{eff}²=2.5-4 GeV²

depends on details of charmonium distribution amplitude

7

Coherent J/ ψ photoproduction on nuclei

• Application to nuclear targets:

$$\sigma_{\gamma A \to J/\psi A}(W_{\gamma p}) = \kappa_{A/N}^{2} \frac{d\sigma_{\gamma p \to J/\psi p}(W_{\gamma p}, t = 0)}{dt} \begin{bmatrix} G_{A}(x, \mu^{2}) \\ AG_{N}(x, \mu^{2}) \end{bmatrix}^{2} \Phi_{A}(t_{\min})$$
Small correction k_{A/N} \approx 0.90-95 due to
different skewnesses of nuclear and
nucleon generalized PDFs (GPDs)
• Well-defined impulse approximation (IA):
$$\Phi_{A}(t_{\min}) = \int_{-\infty}^{t_{\min}} dt |F_{A}(t)|^{2}$$

$$\sigma_{\gamma A \to J/\psi A}^{\mathrm{IA}}(W_{\gamma p}) = \frac{d\sigma_{\gamma p \to J/\psi p}(W_{\gamma p}, t=0)}{dt} \Phi_A(t_{\min})$$

• Nuclear suppression factor S (like R_{pA} or R_{AA}) \rightarrow direct access to R_{q}

$$S(W_{\gamma p}) = \left[\frac{\sigma_{\gamma P b \to J/\psi P b}}{\sigma_{\gamma P b \to J/\psi P b}^{\mathrm{IA}}}\right]^{1/2} = \kappa_{A/N} \frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} = \kappa_{A/N} R_g$$

Model-independently* from data on UPC@LHC at (ALICE, CMS, LHCb) and HERA, LHCb Abelev et al. [ALICE], PLB718 (2013) 1273; Abbas et al. [ALICE], EPJ C 73 (2013) 2617; [CMS] PLB 772 (2017) 489; Acharya et al [ALICE], arXiv:2101:04577 [nucl-ex]

From global QCD fits or leading twist nuclear shadowing model

Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290, Guzey, Zhalov, JHEP 1310 (2013) 207

SPb from ALICE and CMS UPC data vs. theory

• Model-independently at y=0 and mostly large-x at forward |y|, Abelev *et al.* [ALICE], PLB718 (2013) 1273; Abbas *et al.* [ALICE], EPJ C 73 (2013) 2617; CMS Collab., PLB 772 (2017) 489, Acharya et al [ALICE], arXiv:2101:04577 [nucl-ex] \rightarrow suppression factor S_{Pb}

- Good agreement with ALICE data at 2.76 and 5.02 TeV \rightarrow direct evidence of large gluon shadowing, $R_g(x=6\times10^{-4} 0.001) \approx 0.6$, predicted by the LT model.
- Also good description using central value of EPS09, EPPS16, large uncertainty.
- Color dipole models generally underestimate the suppression, Goncalves, Machado (2011); Lappi, Mäntysaari, 2013, but proton shape fluctuations help, Mäntysaari, Schenke, PLB 772 (2017) 681

Imaging of nuclear gluons at small x

• In case of non-negligible nuclear shadowing, $\gamma A \rightarrow J/\psi A$ cross section should be modified:

$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt} = \frac{d\sigma_{\gamma p \to J/\psi p}(t=0)}{dt} \left(\frac{R_{g,A}}{R_{g,p}}\right)^2 \left(\frac{g_A(x,\mu^2)}{Ag_p(x,\mu^2)}\right)^2 F_A^2(t)$$
$$\frac{d\sigma_{\gamma A \to J/\psi A}}{dt} = \frac{d\sigma_{\gamma p \to J/\psi p}(t=0)}{dt} \left(\frac{R_{g,A}}{R_{g,p}}\right)^2 \left(\frac{g_A(x,t,\mu^2)}{Ag_p(x,\mu^2)}\right)^2$$

- Answer in terms of nuclear GPD in the $x_1=x_2$ limit, i.e. in terms of impactparameter-dependent nPDF $f_{j/A}(x,Q_0^2,b)$, Guzey, Strikman, Zhalov, PRC 95 (2017) 025204
- Correlations between b and x \rightarrow shift of t-dependence of $\gamma A \rightarrow J/\psi A$ cross section.

t-dependence of coherent J/ ψ photonuclear cross section

Acharya et al. [ALICE] arXiv:2101.04623 [nucl-ex]

Shift of t-dependence = 5-11% broadening in impact parameter space of gluon nPDF

• Similar effect is predicted to be caused by saturation, Cisek, Schafer, Szczurek, PRC86 (2012) 014905; Lappi, Mäntysaari, PRC 87 (2013) 032201; Toll, Ullrich, PRC87 (2013) 024913; Goncalves, Navarra, Spiering, arXiv:1701.04340

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC

 Cross section of dijet photoproduction using collinear factorization and next-to- X_{γ} leading (NLO) pQCD, which is successful for HERA data on dijet photoproduction in XAS ep scattering, Klasen, Kramer, Z.Phys. C 72 (1996) 107, Z. Phys. C 76 (1997) 67; Klasen, Rev. Mod. Phys. 74 (2002) (a) (b)1221; Klasen, Kramer, EPJC 71 (2011) 1774 direct resolved $d\sigma(AA \rightarrow A + 2jets + X) =$ $\sum_{a,b} \int dy \int dx_{\gamma} \int dx_A f_{\gamma/A}(y) f_{a/\gamma}(x_{\gamma},\mu^2) f_{b/A}(x_A,\mu^2) d\hat{\sigma}_{ab\to \text{jets}}$ Photon flux from QED: Photon PDFs - high intensity $\sim Z^2$ (resolved photon), Hard parton - high photon energy $\sim \gamma_{\rm L}$ from e+e- data cross section $f_{\gamma/A}(y) = \frac{2\alpha_{\text{e.m.}}Z^2}{\pi} \frac{1}{y} \left[\zeta K_0(\zeta) K_1(\zeta) - \frac{\zeta^2}{2} (K_1^2(\zeta) - K_0^2(\zeta)) \right]$ **Nuclear PDFs** (nCTEQ15, EPPS16) $\zeta = ym_p b_{\min} \approx ym_p (2R_A)$

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC (2)

• NLO pQCD vs. ATLAS data as a function of the dijet transverse momentum $H_T = E_T jet^1 + E_T jet^2$ and nuclear momentum fraction $x_A = (m_{jets}/\sqrt{s_{NN}})e^{-yjets}$

• Shape and normalization of the ATLAS data are reproduced well. Note that the data is preliminary and has not been corrected for detector response.

Inclusive dijet photoproduction in^{10⁻¹⁰} Pb-Pb UPCs@LHC (3)

 Resolved vs. direct photon contributions: resolved photons dominate for x_A>0.01; resolved and direct are compatible for x_A<0.01 → similar trend in leading order (LO) analysis in PYTHIA8 framework,

Helenius, Rasmusen, EPJ C 79 (2019) 5, 413

• Nuclear modifications: shape of R =repeats that of $R_g(x)=g_A/Ag_N$: 10% shadowing for $x_A < 0.01$, 20% antishadowing at $x_A \sim 0.1$, 5-10% EMC effect for large x_A \rightarrow can be compared to predictions for EIC, Klasen, Kovarik, PRD 97 (2018) 114013

 $d\sigma(AA \rightarrow A + 2jets + X)$

 $d\sigma^{\mathrm{IA}}(AA \to A + 2\mathrm{jets} + X)$

14

 $f_{b/A}^{\mathrm{IA}} = Zf_{b/p} + (A - Z)f_{b/n}$

Reweighting of dijet UPC pseudo-data

• We used our NLO pQCD results in ATLAS kinematics as pseudo-data:

• Effect of the pseudo-data on the nuclear gluon distribution and its uncertainty:

• Assuming 5% error \rightarrow reduction of uncertainties by factor 2 at x_A=0.001.

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC

- In framework of collinear factorization & NLO pQCD, it probes novel nuclear diffractive PDFs.
- Contribution of right-moving photon source:

 $d\sigma(AA \to A + 2jets + X + A)^{(+)} = (a) (b)$ $\sum_{a,b} \int dt \int dx_P \int dz_P \int dy \int dx_\gamma f_{\gamma/A}(y) f_{a/\gamma}(x_\gamma, \mu^2) f_{b/A}^{D(4)}(x_P, z_P, t, \mu^2) d\hat{\sigma}_{ab \to jets}$

- Nuclear diffractive PDF f_{b/A}^{D(4)}= conditional probability to find parton b with mom. fraction z_P with respect to the diffractive exchange (pomeron) carrying mom. fraction x_P provided the nucleus remained intact with mom. transfer t.
- f<sub>b/A^{D(4)} is subject to nuclear modifications. The leading twist nuclear shadowing model predicts strong nuclear suppression (shadowing), Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255
 </sub>

$$f_{b/A}^{D(4)}(x_P, z_P, t, \mu^2) = R_b(x_P, z_P, \mu^2) A^2 F_A^2(t) f_{b/p}^{D(4)}(x_P, z_P, t = 0, \mu^2)$$

$$\approx 0.15 A^2 F_A^2(t) f_{b/p}^{D(4)}(x_P, z_P, t = 0, \mu^2)$$

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC (2)

• NLO pQCD predictions as a function of momentum fractions $x\gamma$ and z_P , leading jet transverse momentum E_T^{jet1} , and photon-nucleus energy W.

Guzey, Klasen, JHEP 04 (2016) 158

17

Diffractive dijet photoproduction in Pb-Pb UPCs@LHC (3)

- Analyses of diffractive dijet photoproduction in ep scattering@HERA → QCD factorization is broken, i.e., NLO calculations overestimate data by factor of ~2, Klasen, Kramer, EPJ C 38 (2004) 93; PRL 93 (2004) 232002; JPhys.G 31 (2005) 1391; MPLA 23 (2008) 1885; EPJ C 70 (2010) 91; PLB 508 (2001) 259; EPJ C 49 (2007) 957; PRD 80 (2009) 074006; Guzey, Klasen, EPJ C 76 (2016) 8, 467
- The pattern of unknown: either the global suppression factor R(glob.)=0.5 or the resolved-only suppression R(res.)=0.34, Kaidalov, Khoze, Martin, Ryskin, EPJ C 66 (2010) 373
- One can differentiate between these two scenarios by studying $x\gamma$ distribution in AA UPCs, Guzey, Klasen, JHEP 04 (2016) 158

Summary

• The gluon nuclear shadowing at small x is poorly constrained by available fixedtarget nuclear DIS, dA RHIC, and pA LHC data.

• The leading twist model makes predictions for nuclear shadowing in various nPDFs (usual, diffractive, b-dependent), which can be best tested at an EIC and LHeC.

• Before EIC and LHeC, new constrains on small-x nPDFs can obtained from Pb-Pb UPCs at the LHC: exclusive photoproduction of J/ψ , inclusive and diffractive dijet photoproduction.

• Coherent photoproduction of J/ ψ in Pb-Pb UPCs at LHC gives direct evidence of large gluon nuclear shadowing R_g(x=6×10⁻⁴-10⁻³, $\mu^2 \approx 3 \text{ GeV}^2$) ≈ 0.6 and can help to significantly reduce uncertainties in wide region of x.

• Heavy quarkonium photoproduction in UPCs gives access to transverse imaging of gluon distribution at small x.

• Inclusive dijet photoproduction in Pb-Pb UPCs@LHC probes nPDFs down to $x_A \sim 0.005$ and can reduce the current small- x_A uncertainties of the gluon distribution by factor of ~ 2 .

• Diifractive dijet photoproduction in Pb-Pb UPCs@LHC accesses novel nuclear diffractive PDFs and may shed new light on mechanism of QCD factorization breaking in this process.