New measurements on Photon-Photon interactions

Ruchi Chudasama
On behalf of ATLAS and CMS collaboration
8th June 2021

Photon-photon interactions

Exclusive dilepton production

- Precision QED measurement
- Measure incoming photon fluxes

Light-by-light scattering

- Rare process proceeds through charged loop in SM, sensitive to BSM
- Constrain on axion-like-particle models.
- Limits on anomalous four-photon coupling at high masses in protonproton collision

Exclusive W production

- Observation of rare SM process
- Measure quartic gauge boson coupling in proton-proton collision.

Exclusive production:

- No other particles in the final state.
- Intact protons (ions) in the final states (semi-exclusive: if proton(ion) p*(Pb*) dissociate).

Results on proton-proton collision covered by Christophe Royon

ATLAS and CMS detectors

Exclusive dimuon production in PbPb collision

Exclusive dilepton production

- Electromagnetic field treated as quasi real photons.
 Quasi-real photons, Q ~ 1/R ~ 0.06 GeV (Pb)
- Photon flux modeled by Equivalent photon approximation
 impact parameter dependence of photon pT not considered.
- Produced dilepton system is back-to-back (acoplanarity ~ 0)

Exclusive dilepton production

- Electromagnetic field treated as quasi real photons.
 Quasi-real photons, Q ~ 1/R ~ 0.06 GeV (Pb)
- Photon flux modeled by Equivalent photon approximation
 impact parameter dependence of photon pT not considered.
- Produced dilepton system is back-to-back (acoplanarity ~ 0)

Modification of dilepton pair in hadronic collision Initial state effect or final state effect?

Exclusive dilepton production

- Electromagnetic field treated as quasi real photons.
 Quasi-real photons, Q ~ 1/R ~ 0.06 GeV (Pb)
- Photon flux modeled by Equivalent photon approximation
 impact parameter dependence of photon pT not considered.
- Produced dilepton system is back-to-back (acoplanarity ~ 0)

Modification of dilepton pair in hadronic collision Initial state effect or final state effect (QGP)?

- Described by lowest-order QED without medium effect
- Impact parameter dependence of initial photon pT considered.
- Better to study in UPC (without QGP medium).

Control the impact parameter in UPC with ZDC

 In PbPb collisions, soft photon might excite Pb, leading to forward neutrons

• Excitation probability $\propto 1/$ (impact parameter)² $\oint_{\overline{Pb}}$

Control the impact parameter in UPC with ZDC

- In PbPb collisions, soft photon might excite Pb, leading to forward neutrons
- Excitation probability $\propto 1/(impact parameter)^2$
- ZDC to classify dissociative events:
 - 0n0n: no activity on both sides of ZDC
 - Xn0n: activity on either side of the ZDC
 - XnXn: activity on both sides

Ann. Rev. Nucl. Part. Sci. 70 (2020) 323

α distribution vs. neutron multiplicity at CMS

2018 PbPb data with 1.5 nb⁻¹ luminosity

- Core: Leading order QED
- Tail: FSR, multiple γ interaction,
 γ from one of the proton inside ion.
- Core α decoupled from tail

core :
$$c_1 e^{-\alpha/c_2 + c_3 \alpha^{0.25}}$$
,
tail : $t_1 [1 + (t_2/t_3)\alpha]^{-t_3}$,

α distribution vs. neutron multiplicity at CMS

2018 PbPb data with 1.5 nb⁻¹ luminosity

- Core: Leading order QED
- Tail: FSR, multiple γ interaction,
 γ from one of the proton inside ion.
- Core α decoupled from tail

core :
$$c_1 e^{-\alpha/c_2 + c_3 \alpha^{0.25}}$$
,
tail : $t_1 [1 + (t_2/t_3)\alpha]^{-t_3}$,

- 5.7 σ (5.0 σ) neutron multiplicity dependence of $<\alpha^{core}>$ ($< m_{uu}>$)
- Impact parameter dependence on initial photon pT

Dimuon acoplanarity for various nuclear breakup topology: ATLAS

ATLAS, arXiv: 2011.12211

- a) Signal: Breit-Wheeler process implemented in STARLIGHT and SuperChic MCs
- Signal: Higher order final state (FSR), does not exist in STARLIGHT/SuperChic, estimated from Pythia8
- c) Dissociative background: Used LPair 4.0

Dimuon acoplanarity for various nuclear breakup topology: ATLAS

2015 PbPb data with 0.48 nb⁻¹ luminosity

- **a)** Signal: Breit-Wheeler process implemented in STARLIGHT and SuperChic MCs
- **b)** Signal: Higher order final state (FSR), does not exist in STARLIGHT/SuperChic, estimated from Pythia8
- c) Dissociative background: Used LPair 4.0
- OnOn described well by STARLIGHT + Pythia8 where there is no ZDC activity
- Xn0n, XnXn: Included Lpair, gives better description where there is ZDC activity.

ATLAS, arXiv: 2011.12211

Data vs. STARLIGHT for $|y_{||}$ and initial photon energy: ATLAS

- Measured cross-section is consistent with STARLIGHT near dimuon rapidity |y_{|||}| = 0
- Excess in data increases with $|y_{\mu\mu}|$

Data vs. STARLIGHT for $|y_{...}|$ and initial photon energy: ATLAS

- Measured cross-section is consistent with STARLIGHT near dimuon rapidity |y_{|||}| = 0
- Excess in data increases with $|y_{\mu\mu}|$

- Incoming photon energies estimated $k_{1,2} = (1/2)m_{\mu\mu} \exp(\pm y_{\mu\mu})$
- Ratio unity ~ 10-20 GeV, Systematic differences observed at low and high k_{1,2}

ZDC fractions vs. $y_{\mu\mu}$ and $m_{\mu\mu}$

- Simultaneous fit to acoplanarity distribution performed to extract ZDC fractions
- STARLIGHT MC over predict the rate of forward activity
- Use of this measurement will allow for improved modeling of photon fluxes and reduction of uncertainties for measurements of rarer processes!

Light-by-light scattering

Light-by-light scattering

- Evidence for light-by-light ($\gamma\gamma \rightarrow \gamma\gamma$) scattering provided by ATLAS and CMS using 2015 PbPb data with luminosity 480 μb^{-1} and 390 μb^{-1}
- Exclusive $\gamma\gamma \rightarrow \gamma\gamma$ sensitive to physics signals beyond the SM such as axion-like particles.
- Observed $\gamma\gamma \rightarrow \gamma\gamma$ 8.2 σ by ATLAS using 2018 PbPb data with luminosity 1.7 nb⁻¹
- ATLAS: 2015 + 2018 differential measurement in this talk.

ATLAS Nature Phys 13 (2017) 852

ATLAS Phys. Rev. Lett. 123 (2019) 052001

Light-by-light scattering: ATLAS (2015 + 2018)

ATLAS JHEP 03 (2021) 243

- ATLAS 2015+ 2018 PbPb data, luminosity 2.2 nb⁻¹
- Two photons with p_r > 2.5 GeV
- diphoton invmass m_{vv} > 5 GeV
- Reduce background from γγ → e⁺e⁻
 - Veto on tracks with pT > 100 MeV
 - Veto on pixel tracks with pT > 50 MeV with 0.5 eta of photon
- Reduce background from calorimeter noise and cosmic
 - Diphoton $p_{\tau}(\gamma\gamma) < 1 \text{ GeV for m}_{vv} < 12 \text{ GeV}$
 - Diphoton $p_T(\gamma\gamma)$ < 2 GeV for $m_{\gamma\gamma}^{(1)}$ > 12 GeV
- Reduce background from gg → γγ

$$-A_{\oplus}$$
: $(1-\Delta\Phi/\Pi) < 0.01$

Measured fiducial cross-section
 120 ± 17 (stat.) ± 13 (syst.) ± 4 (lumi.) nb
 Superchic MC: 78 ± 8 nb
 Data to theory ratio: 1.5 ± 0.32

Unfolded differential cross section distributions. Overall normalization disagreement.

Search for axion like particles: ATLAS and CMS

- The measured diphoton invariant mass distribution used to search for pseudoscalar axion-like particles $\gamma \gamma \rightarrow a \rightarrow \gamma \gamma$
- ALP samples for masses generated from STARLIGHT
 ATLAS: 6-100 GeV, CMS: 5-90 GeV
- No significant ALP excess observed in data above LbL+ backgrounds
- Cross-sections above 2 to 70 nb are excluded at the 95% CL in 6-100 GeV mass interval at ATLAS
- Most stringent constraint in this mass region by PbPb UPC at LHC

Summary

- Observed strong b dependence of $<\alpha^{core}>$
- b dependence on initial photon pT

Summary

- Observed strong b dependence of <α^{core}>
- b dependence on initial photon pT

- Systematic differences between data and STARLIGHT observed.
- Important input for precise photon flux estimation.

Summary

- Observed strong b dependence of <α^{core}>
- b dependence on initial photon pT

- Systematic differences between data and STARLIGHT observed.
- Important input for precise photon flux estimation.

- Observation of light-bylight scattering.
- Most stringent constraint on ALPS by PbPb UPC.

Backup

α distribution vs. neutron multiplicity at CMS

2018 PbPb data with 1.5 nb⁻¹ luminosity

- Core: Leading order QED
- Tail: FSR, multiple γ interaction,
 γ from one of the proton inside ion.
- Core α decoupled from tail
- • Data: $(\alpha^{core}) = (1227 \pm 7 \text{ (stat)} \pm 8 \text{ (syst)}) \times 10^{-6}$
- STARLIGHT: 1350 × 10⁻⁶

Data vs. STARLIGHT for m_{...}: ATLAS

ATLAS, arXiv: 2011.12211

• Overall increase in data for higher $|y_{\mu\mu}|$